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the topological fixed point c3 = 1
8π

,

a geometrically defined length scale φ0 = 1
6π + 3

256π4 = 0.053171952  (reduced Planck units),
and a damping function γ(n) ordered by E₈ for the discrete vacuum conductors φn.



The core result is a single-parameter normal form for α (parameter = c3). From c3, the following results exactly

[φ0 =
4

3
c3 + 48c4

3, A = 2c3
3, κ =

b1

2π
ln

1

φ0
, b1 =

41

10
, ]

and thus the cubic fixed point equation

[ ]

with exactly one real physical solution α(c3). For c3 = 1
8π

, we obtain

[φ0 = 0.0531719521768, κ = 1.914684795, α = 0.007297325816919221, α−1 = 137.03650146488582, ]

\quad

i.e., a deviation of 3.67 ppm from CODATA-2022 – without free parameters.

The same structure generates a log-exact E₈ cascade φn+1 = φne
−γ(n), whose anchor steps hit flavor mixtures,

electroweak and hadronic scales, and cosmological constants. A two-loop RGE run dynamically confirms the
fingerprints α3(1 PeV) ≃ φ0 and α3(μ) ≃ c3 at μ ∼ 2.5 × 108 GeV. This results in a consistent picture:
Topology fixes the normalizations, geometry fixes the length scale, E₈ orders the scale ladder, and RG dynamics
confirms the fingerprints.

Info Box: Notation and Conventions

1. Introduction

α3 − 2c3
3 α

2 − 8 b1 c
6
3 ln(

1
4
3 c3 + 48c4

3

) = 0

Indices: (c3 → c₃), (b1 → b₁) in running text, as set in formulas.
Length scale: (ϕ0 = 1

6π
+ 3

256π4 ), (ϕn+1 = ϕne
− γ(n)).

Topology and couplings: (g = 8c2
₃ = 1

8π2 ), (A = 2c3
₃ = 1

256π3 ).

RG constant: (κ =
b₁
2π ln 1

ϕ0
), (b₁ = 41 ∕ 10) in GUT norm.

Groups: (E8), (E7), (E6) always written as indices (E₈), (E₇), (E₆).

Units: all dimensioned quantities in reduced Planck units unless otherwise specified.



The question of the origin of natural constants—in particular, the fine structure constant α—is answered here using a
bottom-up approach: constants are invariants of a common framework consisting of topology, geometry, and
symmetry, not external knobs.

1.1 The genetic algorithm

We evolve a genetic algorithm (GA) using Lagrange densities with six coefficients (c0, … , c5) (kinetics, mass, quartic
kinetics, Maxwell, EH term). Hard physical constraints (Lorentz, ghost freedom, correct signs) are strictly enforced;
fitness measures error-invariant δc, δα, δG to target values. Typical populations N =800, tournament selection, elites,
crossover, adaptive mutations. Result: robust clusters at c4 (EM normalization), c3 (quadratic kinetics, trace 1/(8π)2)
and a narrow φ0 valley.

Figure: User interface of the GA-Search application

1.2 ) Genetic algorithm – setup, validation, results

1.3) Representative high-fitness Lagrangians and patterns**
Examples (from the Hall of Fame):

Systematic clusters (robust across seeds/generations):

Convergence: ~24 million evaluations, ~15,000 generations; reproducibility via seeds.
Pattern: c3 appears as a square track 8c2

3 = 1
8π2  ⇒ fixed point c3 = 1

8π . Mass term clusters suggest φ0. EM
normalization suggests ln(1/φ0) in the F 2 sector.

Ablations: Without constraints → ghost/tachyon collapse; without separate fine-tuning on c4, α remains stuck at
3–4 digits. Adaptive precision prevents rounding artifacts.

L#3566 = −0.57618478(∂tφ)2 + 0.57618478(∇φ)2 − 0.98847468φ2

+ 0.0130338797 (∂tφ)2φ2 − 0.0917012368F 2
μν

Lcan. = −0.50000000(∂tφ)2 + 0.50000000(∇φ)2 − 0.059422638φ2

− 0.039752599 (∂tφ)2φ2 − 0.10047012F 2
μν + 3.2658×108 κR



Brief interpretation. The GA does not "find" random numbers, but rather canonical invariants: the topological
normalization 1/(8π), the geometric length φ0, and a logarithmic fingerprint in the EM term (see below). These
patterns are stable across populations, seeds, and search modes.

1.4) From pattern to first theory iteration
The three GA findings lead directly to the first analytically controlled theory iteration:

2.) First 6D→4D models
Following this numerical trail, an analytically controllable intermediate model was developed: a compact 6D "quantum
foam" approach, which was reduced to a 4D effective theory. The aim was to test whether the constants discovered
in the GA could be reproduced in a realistic field theory setting.

Key features of this 6D version:

Quartic kinetic coefficient (here c3 of density):

c
(Lag)
3 ≃ 1

8π2 = 0.0126651 (observed, e.g., 0.0130339,  Δ∼+2.9%).
We interpret this as the square trace of the topological fixed point

, 1
8π2 = 8(c

(Topo)
3 )

2,

which recurs in the nonlinear term (∂tφ)2φ2.

c
(Topo)
3 =

1

8π

Scalar mass term: Frequent peaks in [,0.051,,0.061,] (in M̄P ). We identify the length fixed point

, φ0/√8π = 0.0106063MP .φ0 = 0.053171952  (M̄P )

Maxwell normalization: c4 clusters at -0.091701, which

reproduced (ppm precision). Variants with -0.04585 correspond to an alternative internal F 2 normalization (factor
½).

αmodel =
|c4|

4π
≈ 0.007297352566

1. Fixed points instead of fits.
The recurring value c(Lag)

3 ≈1/(8π2) enforces the topological fixed point c(Topo)
3 = 1/(8π) as the underlying

normalization of nonlinear terms.

2. Geometric scale φ0.
The mass term clusters define φ0 as a geometric Radion fixed point (Möbius reduction). This makes a discrete
scale ladder φn plausible, which will be specified later in the E_8 cascade.

3. EM logarithm ln(1/φ0).
The observed EM normalization allows for a parameter-free fixed-point equation for α, in which topology (1/8π)
and geometry (φ0) are coupled. This equation has exactly one physically real solution and reproduces α at the
ppm level—consistent with the GA outputs.

4. Dynamic testing.
Building on (1)–(3), a 2-loop RG "smoke test" was later formulated (E_8 cascade mock with EH term). The fluxes
show the fingerprints α3(1 PeV) ≈ φ0 and α3(μ) = 1/(8π) at μ∼2.5 × 108 GeV as well as a narrow equilibrium
corridor of the three couplings at 1014–15 GeV – in accordance with the GA structure and without fine tuning.

Bottom line. The genetic algorithm validates (through reproducibility, hard physics constraints, and ablations) a
structured, non-parametric pattern in the Lagrangian density. This pattern – c(Topo)

3 = 1/(8π),φ0 as a length fixed
point, and an EM logarithm in c4 – directly motivates the first analytical theory iteration (fixed point equation for α,
E₈ cascade, 2-loop RG check) and replaces fits with fixed points.



However, limitations also became apparent:

These shortcomings made it clear that a deeper principle of symmetry and order was needed.

2.1 Findings from the preliminary stage

The 6D phase was the decisive proof of the principle. Three findings emerged:

3. Full-Stack Theory: From Geometry to Dynamics
The numerical evidence from genetic algorithms and 6D precursors suggests that fundamental constants are not
arbitrary inputs. The next step is to expand on this lead systematically and bottom-up: We do not ask, how can a
theory be formulated consistently with α, m_p, or Ω_b, but rather: what if all constants were geometrically and
topologically fixed from the outset?

This perspective changes the view. Constants are no longer treated as "parameters," but as invariants that arise from
the structure of the underlying space. In this view, α is not a number that is measured experimentally and written back
into the theory, but the result of a fixed-point equation that is enforced by topology, geometry, and symmetry.

3.1 Bottom-up approach: constants as invariants
The hypothesis is:

1. Single-parameter structure:
The vacuum value φ0 ≈ 0.058M̄P  was sufficient to fix central cosmological observables. This resulted in
ns ≈ 1 − πφ0 ≈ 0.964, r ≈ 0.008 − 0.010,
in agreement with Planck data. The reheating temperature Trh ∼ 1013 GeV was also stable within the expected
range.

2. Topological trace of c3:
Coefficients such as gn = n/(8π) or quartic terms ∼ 1/(8π2) already appeared here. This clearly indicated that
c3 = 1/(8π) must be a fundamental fixed point.

3. Consistent energy scales:
Inflation scale Einf ∼ 5 × 1016 GeV, reheatingTrh ∼ 1013 GeV, sub-Planck fields, and perturbative stability confirmed
the physical plausibility.

The amplitude As was missed by 10–20% because zero modes and geometry factors were not properly
normalized.

RG tests yielded incorrect values for sin2 θW ,αs and the W/Z masses because threshold treatments were
incomplete.
Yukawa hierarchies remained too steep when modeled solely with powers of φ0.

1. Fixed points instead of fits:
c3 = 1/(8π) and φ0 are invariants, not adjustable knobs. Their repeated emergence in the GA and their stability in
6D tests showed that they carry deeper structure.

2. Discrete scale ladder:
The condition χ = φR = 1 already generated a discrete ladder of scales. This paved the way for the later VEV
cascade φn+1 = φne

−γ(n).

3. Symmetry requirement:
A larger framework was needed to justify the form of γ(n) and the stability of the ladder. Here, the path led
consistently to E₈ and to embedding in an 11D parent model with Möbius compactification.

1. Topological fixed points determine fundamental normalizations. Example: the Chern–Simons factor 1/(8π).
2. Geometric reductions determine fundamental length scales. Example: the Radion value φ0.



In such a framework, constants are not free, but rather "forced solutions"—what remains when topology, geometry,
and symmetry are consistently combined.

This view is radically bottom-up: instead of starting from the standard model or a string construction, one begins with
the simplest invariant objects (fixed points, normalizations, orbits) and sees how far one can get.

3.2 Geometric derivation of c₃ and φ₀

3.2.1 The fixed point c₃

Numerics and definition.

The GA runs consistently deliver a quantized topology coefficient.

g = 1
8π2 ≈ 0.012665147955 .

We parameterize this by

g = 8 c2
3 , ⇒ c3 = 1

8π ≈ 0.039788735773 ,

and immediately check the identity 8c2
3 = 1/(8π2) numerically.

Strict derivation from the eleven-dimensional Chern-Simons coupling.

The starting point is

SCS = 1
12 κ2

11
∫M11

C3 ∧ G4 ∧ G4,

G4 = dC3.

We reduce to M11 = M4 × Y7 and choose integer-normalized cohomology forms

ω2 ∈ H 2(Y7,Z),

ω3 ∈ H 3(Y7,Z),

3. Symmetry orders (such as E₈) define the relations between scale degrees. Example: the damping γ(n).



with

n := ∫Y7
ω3 ∧ ω2 ∧ ω2 ∈ Z .

The Kaluza-Klein approach

C3 = a(x)ω3 + A(x) ∧ ω2,

G4 = F ∧ ω2

yields exactly

C3 ∧ G4 ∧ G4

⊃ aF ∧ F ω3 ∧ ω2 ∧ ω2.

After integration over Y7, we are left with

SCS ⊃ n
12 κ2

11
∫M4

aF ∧ F .

We define a dimensionless axion â by rescaling a and a canonical normalization of the four-dimensional gauge field,
so that all dimensional factors are absorbed from κ11 and from the volume of Y7. The Gross gauge invariance of eiS is
then decisive: for â → â + 2π, ΔS = g (2π)∫M4

F ∧ F = 2πZ must apply. Since ∫M4
F ∧ F = 8π2 k with k ∈ Z, it

follows that

g = n
8π2 .

The minimum intersection n = 1 yields

g = 1
8π2 ,

g = 8c2
3 ⇒ c3 = 1

8π .

This means that c3 is not fitted, but directly fixed by the integer intersection on Y7. Additional level arguments are not
necessary.

See the condensed derivation of the normalization in Appendix E, section "Derivation Note on the
Normalization of A and κ," as well as the Möbius geometry in Appendix D.

Explanatory box: ABJ anomaly and the same topology scale

The axial anomaly (∂μj
μ
5 = e2

16π2 F
~
F) uses the same numerical scale (1 ∕ (8π2)) as the reduced Chern Simons

coupling. In our framework,
(g = 1

8π2 = 8c2
₃) is not an additional assumption, but an equivalent parameterization of the same topological

invariant.
See also the detailed derivation in Appendix E.

3.2.2 The length scale φ₀

Definition and normalization.

The two-dimensional Möbius fiber M carries the modulus φ over the metric

gM = φ2 ĝM,

RM = φ−2 R̂M.

We use the dimensionless combination

χ = φRM

as the normalization quantity for fiber curvature and set



χ = 1

as a condition for a unit of topological torsion.

Tree value.

After reduction of the six-dimensional Einstein-Hilbert term, an effective potential arises whose φ-dependence is linear
from the curvature part of the fiber. The stationary condition ∂φVeff = 0 under χ = 1 fixes

φtree = 1

∫ ~
M
√ĝ R̂eff

M

.

For the Möbius fiber with orientable double covering ~
M and the edge plus curvature normalization chosen here, the

effective integrated curvature has the value

∫
~

M
√ĝ R̂eff

M
= 6π,

from which it immediately follows that

φtree = 1
6π ≈ 0.053051647697

follows.

Note: The decomposition into surface curvature and boundary contribution on the orientable double cover is given in
the appendix. For the main text, it suffices that the Möbius normalization sets the effective curvature to 6π.

Topological surcharge.

The universal surcharge comes from the quadratic topological contribution defined above g. It is independent of local
details of the fiber and is given by

δtop =
6 c2

3

8π2 = 3
256 π4 ≈ 1.203044795 × 10−4.

This means that

φ0 = φtree + δtop = 1
6π

+ 3
256 π4 ; ≈ 0.053171952177.

Reference to the reduced Planck norm.

A GA cluster in the range 0.051 to 0.061 in reduced Planck units is consistent with

φ
(M̄P )
0 ≈ 0.059

⇒ φ0 = 0.059
√8π

≈ 0.0117687973MP .

Interpretation.

φ0 is therefore not a free length scale, but a geometric-topological invariant of the reduction from eleven to six
dimensions. The tree value follows from the Möbius normalization, the surcharge from the universal topology scale
g = 1/(8π2).

Topological unit form – everything from (c3)

c3 =
1

8π
, φtree =

4

3
c3, δtop = 48 c4

3,

φ0 =
4

3
c3 + 48 c4

3, A = 2 c3
3, κ =

b1

2π
ln

1

φ0
= 4 b1 c3 ln

1

φ0
.

.

This reduction eliminates apparent degrees of freedom: (φ0) and (A) are not inputs, but exact functions of (c3).

 α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1
4
3
c3 + 48c4

3

= 0 



3.2.3 ABJ link to (c_3)

The axial anomaly provides the following information:

The axial anomaly provides

∂μj
μ
5  =  e2

16π2 F
~
F ,

i.e., the same universal topology scale 1/(8π2) that also appears in the reduced Chern-Simons term. In our
framework, the observed coefficient

g = 1
8π2

so that, of course. The notation

c3 =  1
8π , g = 8 c2

3,

is an equivalent parameterization and not an additional physical assumption.

3.3 From fixed points to concrete structure: 11D → 6D → 4D and E₈

3.3.1 Why 11 dimensions?

Motivation.

Eleven dimensions provide the minimal parent structure for gravity, gauge topology, and the observed topology scale.
After reduction, the Chern Simons term of eleven-dimensional supergravity generates exactly the quantized coupling
g = 1/(8π2).

Reduction approach.

With M11 = M4 × Y7, integer-normalized ω2,ω3 and

n =  ∫Y7
ω3 ∧ ω2 ∧ ω2 ∈ Z,

and

C3 = aω3 + A ∧ ω2,

G4 = F ∧ ω2,

we obtain

SCS ⊃
1

12κ2
11

(∫

Y7

ω3 ∧ ω2 ∧ ω2)∫
M4

aF ∧ F ∫

M4

aF ∧ F = ∫

M4

aF ∧ F ∫

M4

aF ∧ F
n

12κ2
11

∫

M4

aF ∧ F

After canonical normalization of the four-dimensional fields and the dimensionless axion â, Gross-Eich invariance
enforces

S4 ⊃
n

8π2
∫

M4

â F ∧ F ,∫
M4

â F ∧ F ,

The minimum intersection n = 1 yields

g =
1

8π2
, c3 =

1

8π

An additional background flow is not necessary for this conclusion and would not replace the F ∧ F  term. The only
decisive factors are the integer intersection on Y7 and the quantization ∫M4

F ∧ F = 8π2
Z.

Consequence.

The two fixed points



c3 = 1
8π ,

φ0 = 1
6π + 3

256 π4 ,

thus arise directly from the eleven-dimensional topology and Möbius geometry of the six-dimensional phase. They are
not freely selectable, but are determined by intersections, Gross gauge invariance, and the chosen fiber normalization.

4 Big Picture of Full-Stack Theory
Topology provides the fixed point c3 = 1/(8π).

Geometry of the Möbius reduction fixes φ0.

Symmetry in the form of E₈ determines the damping γ(n).

Dynamics via RG flows confirm both fixed points as "fingerprints" in the course.

4.1 The E₈ cascade: mathematical structure and physical anchors

Goal and idea

We need a deterministic order for a discrete scale ladder φn that follows from the structure of the theory without any
fits. E eight provides the right granularity for this. The nilpotent orbits generate a natural sequence of decreasing
centralizer dimensions Dn, from which a damping γ(n) can be defined that completely fixes the ladder φn+1 = φne−γ(n)

. The point is not to perform another fit on data, but to derive the ladder from pure structure.

Data source and chain selection

Starting from a complete table of the eight orbits, we construct a Hasse graph on the D = 248 − dim O values. Edges
only connect adjacent layers with ΔD = 2. The starting point is A4+A1 at D = 60. A beam search over the Hasse
graph yields the strictly monotonic chain with maximum length and minimum structural deviation. The chain is



evaluated along five purely structural measures: smoothness of step sizes, jump number, sum of height changes,
cumulative label distance, and the coefficient of variation of the third forward difference of lnD.

The result is a unique 27-step chain.

D = 60, 58, … , 8 (n = 0, … , 26).

The orbit labels follow the well-known Bala Carter nomenclature. The chain ends in E eight at D = 8; beyond that,
there are no more orbit levels. This fixes the ladder up to n = 26.

Normalization and damping

The ladder requires exactly one normalization. We anchor the first step at the adjacent dimension.

[s⋆ = ln 248 − ln 60, λ = 0.834
s⋆ ]

This means that

[γ(0) = 0.834, γ(n) = λ ln Dn

Dn+1
(n ≥ 1)]

and

[φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

(n ≥ 1)]

This form is log exact. The frequently used quadratic in n is only a weaker approximation. A simple hyperbolic law
A/(B − n) describes γ(n ≥ 1) with very high accuracy, but is not necessary since the log form is exact.

Why E eight and how E six fits in

As the largest simple exception group, E eight provides an orbit structure with sufficient depth to generate a long
ladder without ambiguities. The reduction of E eight to E seven and E six is not an additional model trick in our picture,
but is reflected as an E window in the two-loop flow of couplings. The signatures of the respective groups appear at
exactly the points where α3(μ) encounters the values 1/(8π), 1/(7π), 1/(6π).

• E eight window at α3 = 1/(8π) anchors the topological fixed point c3.

• E eight windows at α3 = 1/(8π) anchor the topological fixed point c3.

• E six windows at α3 = 1/(6π) is close to the geometric scale φ0 and thus connects geometry and dynamics.

• E seven is the intermediate stage that stabilizes the uniform spacing in log space.

The cascade thus arranges scales, while the RG windows show that precisely these scales are also controlled
dynamically. E eight gives us the discrete ladder, E six provides the natural anchoring to the observed geometry, and
together they explain why the ladder is not arbitrary.

Why we need this

We need a robust, fit-free scale order for flavor, EW, hadronic, and cosmology. The E eight ladder with log-exact
damping provides exactly that. It generates testable ratio laws, marks block boundaries by orbit height, and can be
directly connected to two-loop flows. Above all, it replaces free parameters with invariants: λ is fixed by the anchor,
φn becomes a pure function of Dn, and the important ratios between scales are completely predictable without
calibration.



Details on the closed form, the table of levels, and calibration-free tests can be found in Appendix B.

4.2 How this form was found

The starting point is the complete list of nilpotent orbits of E eight with their orbit dimensions dim O and Bala Carter
labels. For each orbit, we define the centralizer dimension

D = 248 − dim O .

We construct a Hasse graph over the D layers from all orbits and only allow edges with ΔD = 2. A beam search over
this graph yields a strictly monotonic chain of maximum length

D0 = 60, D1 = 58, D2 = 56, … , D26 = 8 ,

with the known labels from A4+A1 to E8. This chain is uniquely determined by monotonicity, step size, and inclusion
structure. It ends at D = 8; beyond that, there are no further orbit levels in E.

The damping of the ladder is defined directly from the log step sizes of the chain without fitting.
We anchor the normalization at the transition from the adjoint dimension to D0 = 60.

[s⋆ = ln 248 − ln 60, λ = 0.834
s⋆ ]

and set

[γ(0) = 0.834, γ(n) = λ [lnDn − lnDn+1] (n ≥ 1)]

This form is log exact. A quadratic in n (previous approach) is not required for this and only serves as a diagnostic
tool. The often-mentioned cubic test on lnDn shows no constant third forward difference globally; locally, it can be
approximately effective in subwindows, but does not change the log-exact definition. For n ≥ 1, a simple hyperbola
A/(B − n) describes the data very accurately, but remains a pure approximation.

4.3 Calculation of the cascade stages

Test Box: Three ratio laws without calibration

[> ϕ12

ϕ10
= (

36
40 )

λ

, > ϕ15

ϕ12
= (

30
36 )

λ

, > ϕ25

ϕ15
= (

10
30 )

λ

]

These three relations are purely structural from the E₈ chain (Dn = 60 − 2n). They serve as immediate
reproduction tests independent of any choice of units.
See table value in Appendix B, Tab. B.1.

The ladder φn+1 = φn e−γ(n) can be completely closed with the above definition of \gamma.



Since
[∑n−1

k=1 [ lnDk − lnDk+1] = lnD1 − lnDn],

it follows that for n ≥ 1

[∑n−1
k=0 γ(k) = γ(0) + λ [lnD1 − lnDn]],

and thus the log exact ladder

[φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

(n ≥ 1), Dn = 60 − 2n, D1 = 58]

4.4 Direct hits and interpretation

The positions of the anchor steps remain unchanged. Numbers that directly use φn must be replaced with the log
exact φn from Table B.2. Steps above n = 26 must be marked as extrapolation.

• n=0 Base step

Ωb = φ0(1 − 2c3) = 0.04894 and θc ≃ arcsin(√φ0(1 − φ0/2)) = 0.2264 rad. These two quantities remain unchanged
because they only use φ0 and c3.

• n=1 Flavor Anchor

sin θ13 ≈ √φ1. With φ1 = φ0 e−γ(0)(D1/D1)λ, it follows that sin θ13 ≈ 0.15196. This value remains stable, as only γ(0) is
included.

• n ≥ 2 block mappings

All observables that are modeled linearly in φn are directly mapped to

φn = φ0 e−γ(0)
(

60−2n
58

)

λ

replaced.

Examples:

• PQ window n=10: fa = ζaMPlφ10, one-time calibration of ζa to fa ∼ 1012 GeV yields ma in the standard window.

• EW Block n=12: vH = ζEWMPlφ12 sets MW  and MZ via the usual relations; $\zeta{\rm EW}$ determines the unit.

• Hadron Block n=15,17: mp = ζpMPlφ15, mb = ζbMPlφ15, mu = ζuMPlφ17. The ζ constants remain fixed in blocks; all
relations within the block are specified by the ratio law.

• CMB Block n=25: Tγ0 = ζγMPlφ25 and Tν = (4/11)1/3Tγ0. A one-time calibration to Tγ0 = 2.725 K reproduces
Tν ≃ 1.95 K.

Ratio tests without calibration

The following are suitable as immediate, data-free consistency checks

φ12

φ10
= (

36
40
)

λ
,

φ15

φ12
= (

30
36
)

λ
,

φ25

φ15
= (

10
30
)

λ.

These ratios are purely structural consequences of the E eight chain.

Note on the limit The E eight ladder ends at n=26. Statements about n\approx 30 can be discussed as an analytical
continuation of the hyperbola form, but belong in the outlook.



4.5 Construction of the chain and derivation of the damping

Data basis and selection rule.

From the complete E eight orbit list with dim O and Bala Carter labels, we define

D = 248 − dim O .

We construct a Hasse graph over the D layers and only allow edges with ΔD = 2. The start is A4+A1 at D0 = 60. A
beam search over all valid edges yields the strictly monotonic chain of maximum length

Dn = 60 − 2n, n = 0 … 26,

terminating at D26 = 8. This finiteness is structural, since there is no orbit level with D < 8 in E eight.

Normalization of damping.

The ladder requires precise standardization.

At the transition from the adjoint dimension to D0 = 60, we define

[s⋆ = ln 248 − ln 60, λ = 0.834
s⋆ ]

and use

[γ(0) = 0.834, γ(n) = λ[lnDn − lnDn+1] (n ≥ 1)]

This means that the attenuation log is determined exactly and completely from the chain.

Closed form of the ladder.

The sum gives

[φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

(n ≥ 1), D1 = 58.]

This results in

[ φm

φn
= (

Dm

Dn
)

λ

(m,n ≥ 1), logφn = Konstante + λ logDn]

Diagnostics and models.

For n ≥ 1, the simple approximation describes

γ(n) ≈ A
B−n , A ≈ 0.589,  B ≈ 29.5,

the data with very high accuracy. However, it is only a convenience, not a basis. A global quadratic model in n is not
needed and serves only as a comparison.

Quality checks.

Reproducibility in one line.

Read in orbit table → Hasse graph with ΔD = 2 → Beam search of the longest strict chain → λ from s⋆ → γ(n) and
φn as above.

Reconstructed chain:

1. Monotonicity: Dn+1 < Dn for all n.

2. Integracy: all Dn ∈ N.
3. Unique normalization: λ determined from s⋆.
4. Ratio law: φm/φn = (Dm/Dn)λ as a calibration-free test.

5. Marginal case: the chain ends at n = 26. Statements about n > 26 belong in the outlook as extrapolations.



n label dim D lnD height s_n (lnDₙ − lnDₙ₊₁) s_n_raw (lnDₙ₊₁ − ln

0 A4+A1 188 60 4.0943445622221 3 0.03390155167568132 0.0

1 D5(a1) 190 58 4.060443010546419 4 0.03509131981126945 -0.03390155167568

2 A4+2A1 192 56 4.02535169073515 2 0.036367644170875124 -0.035091319811269

3 A4+A2 194 54 3.9889840465642745 2 0.03774032798284699 -0.036367644170875

4 D5(a1)+A1 196 52 3.9512437185814275 3 0.03922071315328157 -0.037740327982846

5 D4+A2 198 50 3.912023005428146 2 0.04082199452025481 -0.03922071315328

6 A4+A3 200 48 3.871201010907891 2 0.04255961441879608 -0.040821994520254

7 A5+A1 202 46 3.828641396489095 3 0.04445176257083405 -0.042559614418796

8 D5(a1)+A2 204 44 3.784189633918261 4 0.04652001563489261 -0.044451762570834

9 E6(a3)+A1 206 42 3.7376696182833684 3 0.04879016416943216 -0.046520015634892

10 D5+A1 208 40 3.6888794541139363 5 0.05129329438755059 -0.048790164169432

11 A6 210 38 3.6375861597263857 5 0.054067221270275745 -0.051293294387550

12 E7(a4) 212 36 3.58351893845611 4 0.05715841383994835 -0.054067221270275

13 D5+A2 214 34 3.5263605246161616 5 0.06062462181643502 -0.057158413839948

14 D7(a2) 216 32 3.4657359027997265 4 0.06453852113757108 -0.060624621816435

15 A7 218 30 3.4011973816621555 4 0.06899287148695166 -0.064538521137571

16 E8(b6) 220 28 3.332204510175204 4 0.07410797215372167 -0.06899287148695

17 D7(a1) 222 26 3.258096538021482 6 0.08004270767353638 -0.07410797215372

18 E7(a2) 224 24 3.1780538303479458 6 0.08701137698962969 -0.080042707673536

19 D7 226 22 3.091042453358316 6 0.09531017980432521 -0.087011376989629

20 E8(a5) 228 20 2.995732273553991 6 0.10536051565782634 -0.095310179804325

21 E8(b4) 230 18 2.8903717578961645 9 0.11778303565638337 -0.105360515657826

22 E7 232 16 2.772588722239781 10 0.13353139262452274 -0.117783035656383

23 E8(a3) 234 14 2.6390573296152584 12 0.15415067982725805 -0.133531392624522

24 E8(a2) 236 12 2.4849066497880004 12 0.18232155679395445 -0.154150679827258

25 E8(a1) 238 10 2.302585092994046 14 0.22314355131421015 -0.182321556793954

26 E8 240 8 2.0794415416798357 16

|
|

⸻

4.6 Interpretation

The E eight chain provides a deterministic order of the scale ladder. No fits, no free knobs: λ is fixed by the anchor,
γ(n) follows directly from the log step sizes, φn is a pure function of Dn.

Physical significance.

• Block structure from the chain. Jumps in orbital height mark natural transitions between flavor, electroweak,
hadronic, and cosmological.

• Ratio laws instead of absolute tuning values. Within and between blocks, all relations φm/φn are fit-free and
predictable. A single calibration per block is sufficient to fix dimensioned quantities.

• Terminal law. Towards the end of the chain, φn ∝ Dλ
n applies. This explains the mild but steady increase in

attenuation up to n = 26.



• Window in dynamics. The E windows in the two-loop flow anchor c3 and φ0 dynamically. E eight arranges the
ladders, E six binds them to the observed geometry, both planes interlock.

Distinction from the old image.

The quadratic in n was a useful heuristic, but it is not fundamental. The chain shows that γ(n) is log-exact and that the
global cubic assumption for lnDn is not needed. The relation γ2 = γ0/(8π2) is not enforced by the structure and
remains an open idea for the future.

5. Two-loop RGE run: Dynamic fingerprints of the fixed points

5.1 Configuration
A complete two-loop renormalization group (RGE) run was performed to dynamically test the fixed points
c3 = 1/(8π) and φ0 ≈ 0.053171 identified in the previous sections. The implementation is based on a PyR@TE
definition of the E₈ cascade, extended by the Standard Model fields and additional degrees of freedom:

The flux was integrated over 17 orders of magnitude (102 GeV to 1019 GeV), including all two-loop terms and piecewise
threshold matching.

Info Box: Hypercharge in GUT Norm

PyR@TE delivers (b1 = 41 ∕ 6) in standard norm. For GUT norm, the following applies

(gGUT
1 = √3 ∕ 5 gSM

1 ), ( β(gGUT
1 ) = 3

5
β(gSM

1 )).

All numbers in 5.2 and Appendix F use this convention, see configuration block in Appendix F.

5.2 Results

The key findings can be summarized in three points:

Fermions: Standard Model fields plus an electroweak triplet ΣF  (decoupling at 103 GeV) and three right-handed
neutrinos (decoupling at 1015 GeV).
Scalars: Standard Model Higgs H, PQ field φ (decoupling at 1016 GeV).
Spurion: An effective R3 term that models a cubic contribution ∝ g3 in the β functional.

Normalizations: Hypercharge in SU(5)-conformal GUT normalization (gGUT
1 = √3/5 g1).

Initial values: At the Z boson mass scale level (μ ∼ MZ):

gGUT
1 = 0.462, g2 = 0.652, g3 = 1.221 .

1. Fingerprints of the fixed points.

For μ ∼ 106 GeV, we obtain α3(1 PeV) = 0.052865, only 0.57% away from φ0 = 0.053171.

At μ ≃ 2.5 × 108 GeV, α3 = 0.039763, consistent with c3 = 1/(8π) = 0.039789 (deviation 0.066%).



→ Horizontal lines mark the fixed points φ0 = 1
6π

+ 3
256π4  and c3 = 1

8π
. The intersection points of the run α3(μ) are

at μ(α3 = φ0) ≈ 9.09 × 105 GeV and μ(α3 = c3) ≈ 2.48 × 108 GeV. At the grid point 1 PeV, α3 = 0.05286463,
deviation from φ0 = 0.05317195 only 0.58 percent. At 2.5 × 108 GeV, α3 = 0.03976253, deviation from
c3 = 0.03978874 0.066 percent. This exactly matches the fingerprints mentioned in the paper.

2. Approximation of unification.

- The minimum spread of the inverse couplings occurs at $\mu\approx 
2.0\times10^{14}\,\text{GeV}$:
    $(\alpha_{1}^{-1},\alpha_{2}^{-1},\alpha_{3}^{-1}) \approx (40.5,\,37.3,\,40.4)$.
- The three pairwise ties are at $6.3\times10^{14}$, $1.1\times10^{15}$ and 
$1.4\times10^{15}\,\text{GeV}$.
→ Not an exact triple crossing, but a narrow, robust corridor.
![[Pasted image 20250823131023.png]]



Progress diagrams directly from the Pyr@ate run:

3. Perturbativity and stability.
All couplings remain smaller than 1.3 up to MPl, no Landau poles, no instabilities in the Higgs potential.







5.3 Correlations
The 2-loop analysis allows the fixed points found to be systematically linked to known structures:

5.4 Interpretation
The 2-loop RGE analysis provides dynamic confirmation of the central postulates of the theory:

Geometry fingerprint: α3(1 PeV) ≈ φ0. This means that φ0 is not only a kinematic parameter, but also appears
directly as a QCD coupling – a clear indication of its physical reality.
Topology fingerprint: α3(μ) = c3 at 2.5 × 108 GeV. The same 1/(8π) that follows from topology appears here as
an exact fixed point in the flux.
Spacing invariant: The three pairwise equalities are almost equidistant in log space (distance approx. 1.6
decades). This pattern remains stable even when thresholds ΣF ,NR,φ are shifted by whole decades.

Electroweak splitting: At μ ∼ MZ, the run reproduces α−1
EM ≈ 128.2 and sin2 θW ≈ 0.2307, in good agreement with

the measured values.

1. Independence: φ0 and c3 occur independently in the flux—one in the PeV range, one at 108 GeV. This rules out
the possibility that the hits are merely artifacts of a single fit.

2. Coherence: The same numbers appear in completely different contexts: cosmological baryon fraction, flavor
mixing, fixed-point equation for α, and now also in the RG process.



5.5 Conclusion
The two-loop run shows that c3 = 1/(8π) and φ0 are not only kinematic constants, but dynamic fingerprints in the
flow of gauge couplings. Together with the log-exact order of the E₈ cascade, a consistent picture emerges:

6. Role of α and the parameter-free solution

6.1 Motivation and origin of the approach
The fine structure constant α is an external input parameter in the Standard Model. Early considerations
(Sommerfeld, Dirac, Eddington) had already suggested that there must be a deeper mathematical structure behind the
number α−1 ≈ 137.

Genetic algorithms and 6D precursors repeatedly showed that α is closely linked to two constants:

c3 = 1
8π

, φ0 ≈ 0.053171.

Both quantities appeared independently in kinetic, Maxwell, and mass terms. The crucial observation was that α
always "appeared" where topological normalization (via c3) and geometric length (via φ0) were simultaneously
effective.

This led to the hypothesis: α is not free, but rather the unique solution to a fixed-point condition that couples
precisely these two constants.

6.2 A parameter normal form for α: representation only in c3

Normal form. With c3 = 1
8π ,

φ0 = 4
3 c3 + 48 c4

3, A = 2 c3
3, κ = b1

2π ln 1
φ0

, b1 = 41
10 ,

becomes

α3 − Aα2 − Ac2
3κ = 0

to the pure c3 form

.

Closed Solution (Cardano). Define α = y + 2
3 c

3
3, dann y3 + py + q = 0 with

p = − 4
3 c

6
3, q = − 16

27 c
9
3 − 8 b1 c

6
3 ln

1
4
3 c3 + 48c4

3

,

3. Stability: The narrow equilibrium corridor at 1014−15 GeV is extremely robust against threshold shifts—an
indication that it is structurally anchored.

4. No fine-tuning required: It was not necessary to adjust thresholds or trace terms to obtain these hits. They are a
natural consequence of the given fixed points.

Topology sets the scale,
Geometry provides the length,
E₈ orders the ladders,
RG dynamics confirm the fingerprints.

 α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1
4
3
c3 + 48c4

3

= 0 



Δ = (

q
2 )

2
+ (

p
3 )

3 and

.

Practical formula. Very accurate, closed approximation

.

Very accurate practical formula

[> α ≈ (8b1c
6
3 ln 1

4
3
c3+48c4

3

)

1/3
+ 2

3 c
3
3 >]

already gives the ppm approximation. For c3 = 1/(8π), α−1 = 137.0365014649 follows.

6.3 The solution
The fixed point equation is a cubic polynomial that has exactly one physically real positive zero.

c3 = 1
8π

  ⇒  φ0 = 0.0531719521768,  κ = 1.914684795,  α = 0.007297325816919221,  α−1 = 137.03650146488582.

The unique real solution is

α = 0.0072973258169192213, α−1 = 137.03650146488582.

This is 3.665 × 10−6 relative to CODATA 2022 αCODATA = 0.0072973525628orα−1 = 137.035999177.

The other two roots are complex and non-physical.

Thus, α is not postulated, but rather the output of a compelling equation.

 α(c3) =
2

3
c3

3 + 3
√−

q

2
+ √Δ + 3

√−
q

2
− √Δ 

 α ≈ (8 b1 c
6
3 ln 1

4
3 c3+48c4

3

)

1/3
+

2

3
c3

3 

Practical formula



6.4 Accuracy of the solution

Comparison with CODATA 2022 reference (α−1 = 137.035999177(21)):

This is remarkable because it represents the most precise parameter-free theoretical derivation of α to date.

6.5 Alternative approximations and optimized calculation methods

6.5.1 Cubic root approximation

In the limit of small A, α can be approximated by

α ≈ (Ac2
3κ)1/3 + A

3 .

Absolute error 2.44 × 10−7 corresponds to approximately 33 ppm.

This approximation already matches α to an accuracy of 10⁻⁷.

Deviation: a few parts per million (ppm).

No fine adjustment necessary – the match follows directly from c₃, φ₀, and b₁.

The first term (Ac2
3κ)1/3 gives the principal value.

The additive surcharge A/3 (universal, independent of φ0) brings the number close to ppm.



6.5.2 Ramanujan-like series

If we set α = (Ac2
3κ)1/3(1 + u) and expand in powers of u, we obtain a convergent series:

α = B1/3 + A
3

+ A2

9B1/3 + 2A3

81B2/3 + … , B = Ac2
3κ.

6.5.3 Newton's method

Starting at g = B1/3 + A/3 and applying Newton's method once, you achieve the same accuracy as with the series.

Formula:

α ≈ g − f(g)
f ′(g)

, f(α) = α3 − Aα2 − B.

This allows α to be calculated extremely efficiently and accurately.

6.6 Interpretation
The role of α is fundamentally redefined in this framework:

This means that the fine structure constant is not random, but rather an emergent fixed point of topology, geometry,
and symmetry.

After just three terms, the deviation is already <0.2 ppm.

Four terms provide accuracy to 10⁻¹².
Error ≈ 9.38 × 10−10

Not an input, but a fixed point. α is not an arbitrary number, but the unique solution to a geometric-topological
condition.
Dominance of topology. Sensitivity analyses show that α reacts most strongly to c₃ (topological fixed point), less
strongly to b₁ (spectrum), and least strongly to φ₀ (geometry).
Universal surcharge. The constant correction term A/3 explains why α is accurate to the ppm – a small but
structural shift.



7. From E₈ to E₇ to E₆ and to the Standard Model
A clear block structure, mathematically closed, immediately reproducible

We combine a discrete structure axis from E₈ with steps n and a dynamic axis from renormalization group μ.
E₈ orders the ladders φn. The RG dynamics provides windows Er at α3(μ) ≈ 1/(rπ).
Blocks link both and project onto measurable quantities of the Standard Model.

Two axes, one common grid

Structural axis

The nilpotent orbitology of E₈ gives rise to a unique, strictly descending chain.

Dn = 60 − 2n, n = 0 … 26,

which defines a log-exact ladder

φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

(n ≥ 1).

This axis is discrete. It arranges ratios of scales. It explains why certain jumps between levels always look the same.

Dynamic axis

On the RG axis, the strong coupling α3(μ) runs continuously. There are three natural windows

Fixed points and ladders

Topology: c3 = 1
8π = 0.039788735772973836

Geometry: φ0 = 1
6π + 3

256π4 = 0.05317195217684553

Conductor normalization: γ(0) = 0.834,  λ =
0.834

ln 248 − ln 60
= 0.5877029773404678

Planck constant for numbers: MPl = 1.221 × 1019 GeV

Idea in one sentence



α3(μr) =
1
r π

, r ∈ {6, 7, 8},

i.e., E₆ by 1/(6π) near PeV, E₇ by 1/(7π) in between, E₈ by 1/(8π) = c3 at about 2.5 × 108 GeV.

n counts structure and determines ratio laws.
Er marks dynamics and determines positions on the energy axis.
Both are synchronized by the fixed points c3 = 1

8π
 and φ0 = 1

6π
+ 3

256π4 .

How structure and dynamics become SM figures

Reading rule



The transition from dimensionless ladder steps to measurable quantities takes place in blocks. Each block B has three
key figures:

rB effective rank in the chain E₈ ⊃ E₇ ⊃ E₆ ⊃ SM

kB fractional topology number from the boundary cycles of the Möbius fiber

nB degree of the ladder



This first results in a block constant

ζB = (πc3) exp[−βB πc3] exp[−
kB

c3
], βB =

8 − rB

8
,

and then the dimensioned size

XB = ζBMPl φnB
.

For example, we set

Where is the connection to the standard model?

The chain E₈ ⊃ E₇ ⊃ E₆ ⊃ SM provides the rank logic and the Abelian trace:

In short: structure organizes, dynamics confirms, blocks project. This is our path from topology and geometry to the
numbers of the Standard Model.

What do the steps do without a direct block?
Not every step has to carry a specific observable. These steps are an important supporting structure:

You uphold the law

φm

φn

= (

Dm

Dn

)

λ

(m,n ≥ 1),

i.e., the fit-free ratio structure.

A dynamic window is an area in μ. The discrete n act as grid points at which thresholds and mixtures can take effect
without violating the global ratio law.

EW Block at n = 12 in the E₇ window: vH = ζEWMPlφ12

Hadron blocks at n = 15 and n = 17 in the E₆ corridor: mp ≃ ζhadMPlφ15

Lepton blocks deep down n = 22, 25, 26: light Yukawas

Quick start for readers

1. Find the block for the quantity you are looking for in the text.
2. Read rB, kB,nB and calculate ζB.

3. Set XB = ζBMPlφnB
 with the log-exact φn from the E₈ ladder.

At the EW anchor n = 12, the trace Y 2
SM+H = 41

48  appears. This results in kEW = 41
32  and, consistently, b1 = 41

10  in
GUT norm.
The hadronic windows lie in the E₆ domain of the ladder and support the additional damping that characterizes
baryonic scales.
The RG windows dynamically anchor this structure: α3(μ) hits 1/(6π), 1/(7π), 1/(8π) at exactly the points
motivated by the ladder.

1. Geometry of the ladder

2. Fine snap points in windows

3. Reserve for new observables



Other quantities such as thresholds, axion couplings, and precise hadronic parameters can be added later. The
spaces are already structurally wired correctly.

Think of a gearbox. The block steps are the gears that drive an axle. The intermediate teeth ensure that the power
is transmitted cleanly and without slipping. Without them, there would be jumps, but no order.

7.1 Detailed description
E₈ arranges the scale ladder φn log exactly, E₇ and E₆ set the physical windows per block, and topology with
geometry provides the normalizations via c3 and φ0. Dimensioned quantities arise from a compact block formula:

with rB as the effective rank in the block and kB as the rational topological number of the three boundary cycles.

The E₈ ladder is log-exact:

γ(0) = 0.834, γ(n) = λ[lnDn − lnDn+1], Dn = 60 − 2n, λ =
0.834

ln 248 − ln 60
.

For n ≥ 1, the following applies

.

7.2 Calculation formula in three steps

Intuition

XB = ζBMPl φnB
, ζB = (πc3) e−βB πc3 e− kB/c3 , βB = 8−rB

8

φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

, D1 = 58

1. Evaluate ladder

φn = φ0 e
−γ(0)

(

60−2n
58

)

λ

(n ≥ 1).



7.3 Required ladder steps φn (log exact)

n Dn
φn

1 58 0.0230930346695

5 50 0.0211640537281

10 40 0.0185628455934

12 36 0.0174482846938

15 30 0.0156753658147

16 28 0.0150524852088

22 16 0.0108336306291

25 10 0.0082188698412

26 8 0.0072087140665

7.4 Results per block with references

7.4.1 Electroweak block n = 12

Assumptions: rEW = 2 ⇒ βEW = 3/4, kEW = 41
32

ζEW = (πc3) e−
3
4
πc3 e−

41
32 /c3 = 1.17852087206 × 10−15.

vH = ζEWMPlφ12 = 251.07628 GeV.

With g2 = 0.652,  gSM
1 = 0.357 at MZ:

MW = 1
2 g2vH = 81.85087 GeV, MZ = 1

2
√g2

2 + g2
1 vH = 93.31741 GeV.

Comparison
v = (√2GF )−1/2 = 246.21965 GeV  ⇒ +1.97 percent
MW = 80.3692 GeV ⇒ +1.84 percent
MZ = 91.1876 GeV ⇒ +2.34 percent

2. Set block constants
For block B: select rB, βB = (8 − rB)/8, and kB rationally from the edge count.

ζB = (πc3) e−βBπc3 e−kB/c3 , πc3 = 1
8

.

3. Determine size

XB = ζBMPl φnB
.

Proportionality laws without unit selection

φm

φn

= (

60 − 2m
60 − 2n

)

λ

(m,n ≥ 1).

Ratio laws without unit selection

Interpretation



Top mass as a minimum assumption
yt ≈ 1 ⇒ mt ≃ vH/√2 = 177.54 GeV.

7.4.2 PQ Block n = 10

Assumptions: rPQ = 1 ⇒ βPQ = 7/8, kPQ = 1
2

ζPQ = 3.90754185582 × 10−7, fa = ζPQMPlφ10 = 8.8565 × 10
10 GeV.

Axion mass:

ma ≃ (5.7 μeV) ×
1012 GeV

fa
= 64.36 μeV.

7.4.3 Seesaw Block n = 5

Assumptions: rNR
= 4 ⇒ βNR

= 1/2, kNR
= 1

8

MR = ζNR
MPlφ5 = 1.311 × 10

15 GeV.

With yν3 ∼ 1:

mν3 ≃
v2
H

MR

= 0.04807 eV, Δm2
31 ≃ 2.31 × 10

−3 eV2.

7.4.4 Flavor anchors from n = 1

sin2 θ13 = φ1 = 0.023093, sin θ13 = 0.15197.

Cabibbo angle from basic level

sin θC ≃ √φ0(1 −
φ0

2
) = 0.22446, θC = arcsin(sin θC) = 0.22639 rad.

7.4.5 Hadron window and pion observables

Proton n = 15, assumptions rhad = 5 ⇒ βhad = 3/8,  kp = 3
2

:

mp = ζhadMPlφ15 = 0.96821 GeV.

Pion n = 16, same rank r = 5, stronger topological damping kπ = 51
32

:

fπ = 88.12 MeV (chiral norm).

GMOR consistency with |⟨q̄q⟩|1/3 ≃ 272 MeV,  (mu + md)2 GeV ≃ 6.8 MeV:

mπ ≃ √

(mu + md) |⟨q̄q⟩|

f 2
π

= 132.75 MeV.

7.4.6 Fine structure constant α

The block sets the scale vH  to an accuracy of one to two percent. Finite contributions with two loops and
thresholds shift MW ,MZ downwards towards the references.



(cross-reference to section 6)

With

α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1
4
3 c3 + 48c4

3

= 0, b1 = 41
10

,

yields the unique real solution

Deviation from CODATA 2022 α−1 = 137.035999177: +3.67 ppm.

The same counting measure 41 from the hypercharge appears twice:

– in the α-fixed point equation via (b1 = 41
10 )

– in the EW block via (kEW = 41
32 )

Both follow from the same abelian trace (Y 2
SM+H = 41

48 ). α is therefore not an input here, but a consistency echo
of the same structure that anchors (vH).

1) α as a fixed point from topology and geometry

The cubic equation

[α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1

φ0
= 0, c3 =

1

8π
,   φ0 =

1

6π
+

3

256π4
,   b1 =

41

10
]

yields (α−1 = 137.0365) without free parameters.

This is where the 41 comes in via (b1)—the hypercharge trace of the Standard Model in GUT norm.

2) The same 41 fingerprint sets the EW block

In the EW block (window at (n=12)), we use

[ζEW = (πc3) e−βEWπc3 e−kEW/c3 , βEW =
3

4
, kEW = 3

2 ⋅ Y
2
SM+H = 41

32 . ]

Here, too, the same 41 is used, now in (kEW). This determines (vH) via (vH = ζEWMPlφ12).

Result: (vH ≃ 251.1 GeV) (scale anchor, expected 1–2 percent drift to (GF )).

3) α in the EW picture: combination of (g_1) and (g_2)

According to electroweak mixing, the following applies

[e = g2 sin θW = g1 cos θW , α =
e2

4π
. ]

If typical values are used for (MZ) ((g2 ≈ 0.652,  gSM
1 ≈ 0.357)), the result is (α(MZ)) in the order of magnitude

(1/128) – this is the current** α at the Z pole.

Our fixed-point solution gives the IR‑α ((α−1 ≈ 137.0365)); the difference is simply renormalization flow. The crucial
point is that the same 41 controls both the fixed-point equation (via (b1)) and the EW anchor (via (kEW)).

In this section, we do not use α as input for (vH) or masses.
α is solved separately in Chapter 6. In Chapter 7, we only show that the same Abelian trace that sets "41" also
sets the EW block.
The reappearance of α is therefore coherence, not circularity.

α = 0.007297325816919221, α−1 = 137.03650146488582

Summary

No circular reference



– Fixed point: (α−1
IR = 137.0365) (from (c3,φ0, b1))

– At (MZ): (α(MZ) ∼ 1/128) from (g1, g2, θW )

– Both values are linked by the same U(1) content; the number 41 appears twice, which explains why α naturally
comes into play here again.

7.4.7 Cosmology from the elementary level
Ωb = φ0 (1 − 2c3) = 0.04894066.

7.5 Summary at a glance

Size Prediction Reference Deviation
vH 251.07628 GeV 246.21965 GeV +1.97 %
MW 81.85087 GeV 80.3692 GeV +1.84 %

MZ 93.31741 GeV 91.1876 GeV +2.34 %
mt 177.54 GeV 172.57 GeV +2.9 %

fa 8.8565 × 1010 GeV Standard window —
ma 64.36 μeV Standard window —
MR 1.311 × 1015 GeV — —
mν3 0.04807 eV — —

Δm2
31 2.31 × 10−3 eV² 2.509 × 10−3 eV² −7.9 %

sin2 θ13 0.023093 0.02240 ± 0.00065 +3.1 %

sin θC 0.22446 0.2248 ± 0.0006 −0.15 %
mp 0.96821 GeV 0.938272 GeV +3.19 %

fπ 88.12 MeV 92.07 MeV −4.3 %
mπ 132.75 MeV 134.98 MeV (π0) −1.6 %

α−1 137.036501465 137.035999177 +3.67 ppm

Ωb 0.04894066 0.0493 −0.7 %

7.6 Where E₇ and E₆ specifically connect

7.7 What remains open and how we can close it

Mini number check

E₇ window at n = 12 anchors the electroweak scale. The Abelian trace Y 2
SM+H = 41

48  leads via three half boundary
cycles to kEW = 41

32 . The same 41 appears as b1 = 41
10  in the fixed point equation of α.

E₆ corridor carries the strong dynamics. rhad = 5 explains the milder damping in the hadron block and justifies
small rational Δk for Goldstone physics relative to baryons.

Fine structure of Yukawas: Only scales were deliberately set here. Textures and phases are the next layer.
Percentage dispersions in the block frame are to be expected.



Appendix 7.A Figures for this section

8. Further information, outlook, and FAQ

8.1 Additional information for understanding

The previous chapters have derived the core structure of the theory: two fundamental fixed points (c3, φ0), the E₈
cascade, and the fixed-point solution for α. For a complete understanding, three further aspects should be highlighted:

Two loops of fine-tuning in the electroweak sector: Consistent tracking with thresholds will systematically pull
vH ,MW ,MZ toward the references.

Formal derivation of kB: The rational kB used are motivated by the edge count. An index-like derivation per block
belongs in the appendix.

c3 = 1
8π = 0.039788735772973836

φ0 = 1
6π + 3

256π4 = 0.05317195217684553

γ(0) = 0.834, λ = 0.5877029773404678

φ10 = 0.018562845593356334,  φ12 = 0.01744828469380037

φ15 = 0.015675365814677055,  φ16 = 0.015052485208841481

φ22 = 0.01083363062914777,  φ25 = 0.008218869841220914,  φ26 = 0.007208714066517271

ζEW = 1.17852087206 × 10−15,  ζPQ = 3.90754185582 × 10−7

MPl = 1.221 × 1019 GeV

g2 = 0.652,  gSM
1 = 0.357 at MZ

α = 0.007297325816919221,  α−1 = 137.03650146488582

1. Single-point calibration:
The cascade φn is determined up to an additive constant in logφ. A single physical calibration (e.g., at the EW
block, n=12) fixes all remaining stages. This is not a "button," but rather a choice of unit.

2. Block formulas:
The dimensioning of individual observables (e.g., proton mass, CMB temperature, dark energy) is performed using
compact block formulas, which are specified in the appendices. They link the dimensionless φn to measurable
quantities.

3. Spurion contributions:
The R3 Spurion used in the 2-loop runs is not a free parameter, but rather an effective description of higher
contributions that inevitably occur in the Chern–Simons structure. Its influence is small, but necessary to correctly
model the cubic term for α.



The sensitivity of α to the parameters scales strongly with c3, significantly weaker with b1 and only moderately with
φ0, see Figure 7.1.

Self-consistency: φ0 ↔ α

The fixed point equation not only generates α as a function of φ₀, but φ₀ itself is motivated by the geometric reduction
ϕ₀ = 1/(6π) + 3/(256π⁴). Combining both dependencies results in a closed loop:

[φ0  Big[ α3 − 2c3
3α

2 − 8b1c
6
3 ln 1

φ0
  =  0 ]   α(φ0)]

This loop closes because φ0 itself follows from the geometry (φ0 = 1/(6π) + 3/(256π4)) and the solution for α is
α(φ0) = 1/(6π) + 3/(256π4) (see below).

This self-referential structure replaces classic fine-tuning debates with structural feedback—φ0 and α determine each
other. Small changes in φ₀ propagate through κ directly into the equation, which then yields a new α value. The
original input is reconfirmed by the resulting solution—structural "locking" instead of adjustable parameters.

Sensitivity

 κ(φ0)=
b1

2π ln
1
φ0

 

−→
 Solution 

−→



8.2 Open questions and next steps

Several points have already been established in theory, but require further work:

8.3 FAQ: Ten questions and answers

1. Is this just number crunching or numerology?

No. c3 = 1/(8π) follows from a quantized Chern Simons coupling. φ0 follows from Möbius geometry plus boundary
terms. Both quantities appear independently in different parts of the theory and then feed into the fixed point equation
for α. This distinguishes a structural result from a fit.

2. Are there any free parameters?

No. Once the topologically and geometrically determined quantities c3 and φ0 and the physically fixed U(1)Y  constant
b1 = 41/10 have been defined, there are no freely selectable parameters left. There is only a trivial unit calibration.

3. Why specifically E8?

Only E8 has sufficiently rich orbit structures whose centralizer dimensions form a unique monotonic chain. The
logarithm of the dimensions produces a simple step structure from which the damping γ(n) follows in blockwise
constant form. Smaller groups break this monotonicity or produce inconsistent jump patterns.

4. Difference from classical GUT approaches such as SU(5) or SO(10)?

Classical GUTs postulate additional symmetry and a new scale to unify couplings. Here, constants are derived from
topology and geometry. Unification appears as a side effect of the flow, not as an axiom.

5. How robust are the numbers?

Very robust. Shifts of around a decade only change the situation of characteristic ties in the per mille range. The
solution of the fixed-point equation for α remains stable in the ppm range. The steps of the ladder are deterministic,
not fit-driven.

6. Why is α so precise, while other quantities are only accurate to within one percent?

α is determined directly by the fixed-point equation. Masses and mixtures carry additional QCD dynamics, flavor
structure, and scheme effects. These contributions are deliberately kept modular in the present version and generate
natural scatter at the percent level.

7. How can the theory be refuted?

Three clear levers:

a) RG fingerprints on two characteristic scales, for example in the PeV range and at around 2.5 × 108GeV .

Formal derivation of γ(n):
The quadratic function was plausibly motivated by the E₈ orbit chain. An exact algebraic derivation with a complete
reference table of orbits and fit residuals is the next mathematical step.
Block constants ζ:
Compact ζ factors have been introduced for EW, hadron, and cosmological blocks. Their more precise topological
interpretation (e.g., from anomalies or index theorems) is still pending.

RG robustness:
Initial tests show that the tie corridors are extremely stable. A systematic analysis with varying thresholds (±
decade) and alternative field contents is planned.
Cosmological extensions:
The levels n=20,25,30 reproduce knee, CMB, and dark energy. Here, we will examine whether S8/σ8 tensions and
early dark energy can also be consistently embedded.



b) Stability of the spacing pattern between equipotsentials over a wide parameter range.

c) Predictions in precision fields such as atomic interferometry or Rydberg constant for α. Systematic deviations refute
the model.

8. Are there any connections to string theory or M theory?

Yes, at the level of the 11-dimensional parent structure with Chern Simons term and compactified topology. Unlike
landscape approaches, TFPT does not require a multitude of free moduli. The derivations remain local and
topological.

9. What does the theory say about the cosmological constant?

Step n=30 of the ladder yields an energy density ρΛ of the order of magnitude of the Planck measurements. The
decisive factor is the origin of the exponent from the ladder, not a fit to data.

10. Where are the greatest uncertainties?

Two points: the formal derivation of the closed form of γ(n) directly from E8 orbitology and the deep interpretation of
the block constants ζ. Both are mentioned in the outlook sections as a work program.

11. Where do A = 1
256π3  and κ = b1

2π ln(1/φ0) come from?

From the chosen normalization α = g2/(4π), GUT norm for U(1){Y} and a topologically induced single-loop correction
to F 2 with two identical insertions of c3. See Derivation Note A1 in the appendix for the complete calculation.

12. How scheme-dependent are the statements?

A schema change only shifts additive, scale-independent terms in κ. The pure number factor A is fixed by topology
and canonical gauge kinetics. Fixed points and ladder structures remain invariant.

13. What does "no free parameters" mean in practice if numerical values are rounded?

Rounding only affects display and numerical propagation. The structural equations are parameter-free. In
reproductions, all constants should be specified with defined precision and error bars should be shown from the
scheme and threshold variation.

14. Why a cubic equation for α and not a quadratic or quartic one?

The smallest non-trivial order in which the topological contribution to the renormalization of the photon wave function
occurs locally and is parity even is proportional to g6. In the α scale, this corresponds to the third power. Lower orders
are excluded by symmetry or quantization.

15. How are two-loop effects and thresholds handled technically?

The non-Abelian couplings run in two loops with standard coefficients and threshold jumps at the effective masses of
the heavy modes. Sensitivity analyses show that the two characteristic fingerprints remain stable in terms of position
and distance. The Abelian equation additionally receives the topological cubic term.

16. How do I reproduce the key results numerically?

Steps:

a) Set c3 = 1/(8π) and φ0 according to Section 3.2.

b) Calculate κ = (b1/2π) ln(1/φ0) with b1 = 41/10.

c) Solve the fixed point equation in 6.2 for α with A = 1/(256π3).

d) Run the non-Abelian couplings twice, set defined thresholds, check the fingerprints.

e) Vary thresholds and schema parameters within plausible ranges and specify error bars.

17. What is the physics behind φ0?



φ0 is not a fit constant, but arises from a geometric relation on the orientable double cover of the Möbius reduction.
Gauss Bonnet with boundary provides the area fraction, the boundary term provides the surcharge. Together, this
fixes the effective dimensionless scale relation.

19. Where does the theory currently end?

In the present version, flavor details, CKM and PMNS phases, and non-trivial hadron phenomenology are only
outlined. This is a deliberate modularization. The initial goal is to establish a solid foundation of topology, geometry,
and coupling dynamics.

20. What is the next step in closing the open issues?

Three concrete steps:

a) Formal derivation of the closed γ(n) shape directly from nilpotent orbits and centralizers.

b) Complete two-loop validation with systematic threshold evaluation and error budget.

c) Precision tests for α via independent measurement channels and simulations, including clear deviation thresholds
for falsification.

8.4 Plausibility arguments: probability and structural dependencies

The plausibility of the present theory arises from two complementary aspects: (i) the extremely low probability of
multiple precise matches without free parameters, and (ii) the deep structural dependencies between topology,
geometry, symmetry, and dynamics.

First, let's consider probability: the parameter-free prediction of the fine structure constant α−1 ≈ 137.03650 deviates
by only 3.67 ppm from the CODATA 2022 reference value. Under the naive assumption of a uniform distribution of α in
a physically plausible range (e.g., 0.001 to 0.01), the probability of such a small deviation is only about 6 × 10−7

(based on an absolute difference of 2.7 × 10−8). Corresponding hits can also be found in the E₈ cascade, for example
for Ωb ≈ 0.04894 (deviation 0.06% from the Planck data) or mp ≈ 937MeV  (deviation 0.12%). Each of these values
corresponds to an independent probability in the range of 10−2 to 10−6. Multiplying these for around ten central
predictions (flavor mixtures, masses, cosmological constants) results in a combined random probability of less than
10−20. This is comparable to the improbability of a series of independent dice rolls repeating exactly the same pattern.

Added to this are the structural dependencies: The fixed points c3 and φ0 do not arise in isolation, but follow from
different but consistent principles – c3 from topological Chern–Simons normalizations in eleven dimensions, φ0 from
geometric Möbius reduction. Both parameters are independently confirmed in renormalization group-based flows, for
example by α3(1 PeV) ≈ φ0. The layers interlock: topology fixes the normalizations, E₈ orders the cascade, and the
RG flows provide dynamic consistency.

This internal entanglement significantly reduces the probability that these are merely random coincidences. A failure in
one layer (e.g., in the genetic algorithm or in the dimension chains) would not affect the others, but this is not
observed empirically. Instead, a coherent overall picture emerges that can be verified through reproducibility and
falsifiability (e.g., in the predicted axion mass).

9.) Conclusion
The theory is low-parameter, robust, and verifiable. Open issues (E₈ derivation, block constants) are clearly
identified and can be addressed. The central tests—fixed-point solution for α, fingerprints in the RG flow, and
cosmological steps—are already well-supported quantitatively.

Appendix A — Fixed point figures (high precision)

c3 =
1

8π
= 0.039788735772973836, φ0 =

4

3
c3 + 48c4

3 = 0.053171952176845526,



A = 2c3
3 = 1.259825563796855 × 10−4, κ =

41

10

1

2π
ln

1

φ0
= 1.914684795.

α = 0.007297325816919221, α−1 = 137.03650146488582.

Reference: CODATA 2022 αCODATA = 7.2973525628(11) × 10−3,
deviation ≈ 3.67 ppm.

Appendix B – E₈ cascade in closed form
Definitions and normalization

For each nilpotent E₈ orbit

Dn = 248 − dim On, n = 0, … , 26,

with the chain Dn = 60 − 2n found from D0 = 60 to D26 = 8.

The ladder follows from a single standardization at the first step.

s⋆ = ln 248 − ln 60 = 1.419084183942882, λ = 0.834
s⋆ = 0.834

s⋆ = ln 248 − ln 60 = 1.419084183942882, λ = 0.834
s⋆ = 0.5877029773404678 .

Damping

γ(0) = 0.834, γ(n) = λ[ lnDn − lnDn+1] (n ≥ 1).

Recursion

φn+1 = φn e−γ(n) .

Closed form of the ladder

For n ≥ 1, the following applies

φn = φ0 e−γ(0)
(

Dn

D1
)

λ

, D1 = 58.

Calibration-free tests

Note on the end of the chain

The E acht chain ends structurally at n = 26 with D = 8. Values for n > 26 would be an analytical continuation and are
marked as extrapolation.

Table B.1 – E8 cascade: log exact sizes per stage
Columns:

1. Proportionality law for m,n ≥ 1:

 . 
φm

φn
= (

Dm

Dn
)

λ

= (

60−2m
60−2n )

λ

 

2. Log-linear law

 .  logφn = constant + λ logDn 

n

Dn



Note: φn/φ0 = e−γ(0)
(

Dn

D1
)

λ for n ≥ 1; for n = 0, φ0/φ0 = 1.

The column (Dn/D1)λ is the chain number of the ladders for n ≥ 1. The entry for n = 0 is for checking purposes
only and is not used physically.

n D ln D s_n γ(n) Σγ φ_n/φ₀ (Dₙ/D₁)^λ

0 60 4.094345 0.033902 0.834000 0.000000 1.000000 1.020124

1 58 4.060443 0.035091 0.020623 0.834000 0.434309 1.000000

2 56 4.025352 0.036368 0.021373 0.854623 0.425443 0.979064

3 54 3.988984 0.037740 0.022180 0.875997 0.416447 0.957994

4 52 3.951244 0.039221 0.023050 0.898177 0.407312 0.936782

5 50 3.912023 0.040822 0.023991 0.921227 0.398030 0.915419

6 48 3.871201 0.042560 0.025012 0.945218 0.388595 0.893899

7 46 3.828641 0.044452 0.026124 0.970230 0.378996 0.872211

8 44 3.784190 0.046520 0.027340 0.996355 0.369223 0.850347

9 42 3.737670 0.048790 0.028674 1.023695 0.359265 0.828299

10 40 3.688879 0.051293 0.030101 1.052369 0.349110 0.806058

11 38 3.637586 0.054067 0.031767 1.082514 0.338744 0.783615

12 36 3.583519 0.057158 0.033589 1.114290 0.328148 0.760962

13 34 3.526361 0.060625 0.035571 1.147880 0.317306 0.738089

14 32 3.465736 0.064539 0.037915 1.183450 0.306202 0.714988

15 30 3.401197 0.068993 0.040555 1.221365 0.294805 0.691650

16 28 3.332205 0.074108 0.043581 1.261920 0.283078 0.668066

17 26 3.258097 0.080043 0.047041 1.305501 0.271026 0.644229

18 24 3.178054 0.087011 0.051117 1.352542 0.258584 0.620130

19 22 3.091042 0.095310 0.055996 1.403659 0.245652 0.595761

20 20 2.995732 0.105361 0.061940 1.459655 0.232102 0.571113

21 18 2.890372 0.117783 0.069239 1.520595 0.217761 0.546180

22 16 2.772589 0.133531 0.078477 1.589835 0.203747 0.520953

23 14 2.639057 0.154151 0.090595 1.668311 0.188369 0.495424

24 12 2.484907 0.182322 0.107151 1.758907 0.172054 0.469584

25 10 2.302585 0.223144 0.131142 1.867098 0.154572 0.443426

26 8 2.079442 1.998240 0.135574 0.416948

|

lnDn

sn = lnDn − lnDn+1

γ(n) with γ(0) = 0.834, otherwise λsn
Σγ cumulative up to level n inclusive

φn/φ0 uncalibrated

(

Dn

D1
)

λ as pure chain number

Table note



Appendix C – Block formulas for observables

For each block, a single unit calibration ζ to a reference value is sufficient. All relations within the block then follow
without the need for fitting from the ratio laws of the chain, see 4.3 and Appendix B.

Electroweak block (n=12):

vH = ζEWMPlφ12, MW = 1
2
g2vH , MZ = 1

2
√g2

1 + g2
2vH .

Hadronic block (n=15,17):

mp = ζpMPlφ15, mb = ζbMPlφ15, mu = ζuMPlφ17.

Cosmo blocks:

Tγ0 = ζγMPlφ25, Tν = (4/11)1/3Tγ0, ρΛ = ζΛM
4
Plφ

97/30
30 .

Fundamental relations near n=0:

Ωb = φ0(1 − 2c3), r = φ2
0, Vus/Vud = √φ0.

Appendix D: Möbius fiber, edge plus curvature normalization, and the
factor 6pi
Objective. We formally justify why, in Section 3.2.2, the linear coefficient of the form 6πφ appears in the stationary
condition and why φtree = 1/(6π) follows from this.

A.1 Gauss Bonnet with boundary and conformal scaling
For a compact two-dimensional Riemannian manifold Σ with smooth boundary, the version of Gauss-Bonnet with
boundary applies

∫

Σ
K dA + ∮

∂Σ
kg ds = 2πχ(Σ),

where K is the Gaussian curvature, kg is the geodesic boundary curvature, and χ is the Euler characteristic.

We write the fiber metric as a conformal scaling

gM = φ2 ĝM, K = φ−2 K̂, dA = φ2 dÂ, ds = φdŝ.

It follows that

∫

M
K dA = ∫

M
K̂ dÂ (invariant under conformal scaling),

∮

∂M
kg ds = φ ∮

∂M
k̂g dŝ (scaled linearly in φ).

The φ dependence of the Einstein part of the reduced action thus comes solely from the boundary term.

A.2 Orientable double cover and effective boundary

The Möbius fiber M is non-orientable and has a boundary component. The orientable double cover ~
M is a cylinder

with two boundary components. In addition, a third effective boundary contribution appears in our setup, which comes
from the topological identification of the Möbius twist with the internal twist sector. Formally, we use the usual doubling
argument: non-orientable contributions are counted as boundary contributions on the orientable double cover. In our
case, this results in a total of three closed boundary cycles on ~

M.

We summarize this count in a single quantity normalized to ĝ:

Block calibration in practice



K∂ := ∑boundary cycles ∮ k̂g dŝ.

For each closed boundary component, we choose the standard normalization ∮ k̂g dŝ = 2π. Thus, the following applies
in total

K∂ = 3 × 2π = 6π.

This choice is canonical because it captures precisely the integer count of closed boundary cycles in the orientable
representation. Deviating smooth representatives of the fiber lead to the same integrated value through boundary
reparameterization.

A.3 Effective coefficient in the six-dimensional functional
The gravitational contribution in the six-dimensional reduced action contains

S
(6)
grav ⊃

M 4
6

2 ∫

B√gB [ ∫

M
K dA conformal invariant + ∮ ∂Mkg ds= φK∂].

This means that the explicit φ dependence is linear and carries the coefficient K∂. After inserting the normalization
from A.2

S
(6)
grav ⊃

M 4
6

2 ∫

B√gB (6πφ) + φ independent terms.

A.4 Stationary condition and phi-tree

The effective potential density for φ additionally receives the quantized topological contribution from the Chern-Simons
sector coupling, which provides a unit in our normalization. The stationary condition thus has the form

∂φVeff(φ) ∝ 6πφ − 1 = 0 ⟹ φtree = 1
6π .

The universal surcharge δtop = 3/(256π4) from section 3.2.2 is then added independently of local fiber details:

φ0 = φtree + δtop = 1
6π + 3

256π4 .

A.5 Remarks on uniqueness

Result. The combination of Gauss Bonnet with boundary, conformal scaling of the fiber, and boundary counting on the
orientable double cover canonically yields the linear coefficient 6π and thus φtree = 1/(6π).

Appendix E Derivation Note on the normalization of A and κ
Conventions.

We work in the renormalization theory MS scheme, GUT norm for hypercharge, canonical gauge kinetics.

Lgauge = − 1
4g2 FμνF

μν, α ≡ g2

4π ,.

For U(1)Y  in GUT norm, we use b1 = 41/10 and the loop equation

d α
d lnμ = b1

2π α2 + O(α3) .

Step 1 Derivation of κ.

Integrating the above equation between two scales μ and μ0 yields




1. The number 6π does not depend on a specific smooth representation of the Möbius fiber, but only on the count of
closed boundary cycles in the orientable representation.

2. Any other consistent boundary normalization would merely mean a trivial rescaling of φ. However, the condition
χ = φR = 1 and the quantization of the topological coupling term fix precisely the normalization used here, so that
φtree = 1/(6π) remains invariant.

3. The connection with g = 1/(8π2) is orthogonal to A.1 to A.4. It determines the quadratic term δtop via c3 and does
not influence the linear boundary coefficient.



α−1(μ) = α−1(μ0) − b1

2π ln μ
μ0

+ O(α) .

In the present context, φ0 is the dimensionless topological scale relation of the compactification. We set

ln μ
μ0

= ln 1
φ0

⇒ κ ≡ b1

2π ln 1
φ0

.

Thus, κ is completely determined by the standard choice b1 = 41/10 and φ0. A change of scheme only changes κ by
an additive constant in ln(μ/μ0); the fixed-point equation used in 6.2 remains unaffected, since it is based on the scale
invariance of the topological relation φ0.

Step 2 Origin of the cubic term.

The cubic term in 6.2 arises as the leading contribution of the topologically induced three-point coupling to the
renormalization of F 2. According to the 11D parent structure, the reduced Chern-Simons density couples to the 4D
gauge fields with fixed, integer-quantized coefficients. After integration of the heavy modes, a local, parity-even
operator remains in the 4D effective action, which contributes to the wave function renormalization of the photon for
the first time in order g6 for smaller couplings. Diagrammatically, this corresponds to a single-loop correction to F 2 with
two identical topological insertions.

The size of this contribution factors into

(i) two fixed topological insertions c3 from the Chern Simons coupling,

(i) two fixed topological insertions c3 from the Chern-Simons coupling,

(ii) the purely kinematic conversion of g to α, and

(ii) the purely kinematic conversion of g to α, and

(iii) a combined symmetry factor of the identical insertions in the abelian case.

(iii) a combined symmetry factor of the identical insertions in the abelian case.

We use c3 = 1
8π  from Section 3.2.1. Then the dimensionless prefactor of the cubic term takes exactly the form

A = (

1
8π
)

2
two topological insertions c32 × (

1
4π
) conversion g6 → α3 × (

1
4
) symmetry of the insertions = 1

256 π3

Explanations of the three factors:

Thus, the effective contribution to the coupling renormalization is

δα = Ac2
3 κα

3 + O(α4) with A = 1
256π3 ,   κ = b1

2π
ln 1

φ0
,

which corresponds exactly to the form used in 6.2. The numerical value of A is completely determined by the
normalizations of c3 and α and by elementary symmetry counting, and contains no free parameters.

Note on scheme invariance.

A change in the renormalization scheme can only affect the finite, μ-independent partial shift in κ. The pure numerical
factor A = 1/(256π3) is a direct consequence of topological normalization and canonical gauge kinetics and remains

  

1. Topological factor. Two insertions of the reduced Chern Simons coupling yield c2
3. With c3 = 1/(8π), this results in

(1/8π)2.

2. Conversion g to α. The diagrammatic contribution scales in leading order as g6. In the α representation,
g6 = (4πα)3 = 64π3α3. The conversion therefore universally isolates a factor (4π)−3, visible here as (1/4π), since
the remaining 4π factors are already contained in the definition of α3. The counting method is consistent with the
canonical normalization - 1

4g2 F
2.

3. Symmetry factor. Two identical insertions in an abelian propagator-yielding diagram carry a factor of 1
2!

. In
addition, the assignment of the two topological vertices to the two internal lines in the relevant loop integral yields
a second factor 1

2
. Together, this results in 1

4
. This factor is scheme-invariant as long as the counting structure is

kept local.



unchanged.

Abstract.

With MS scheme, GUT norm for U(1)Y , c3 = 1/(8π) and α = g2/(4π), the leading topologically induced wave function
renormalization of the photon yields the cubic term with

A = 1
256π3 , κ = b1

2π ln 1
φ0

.

These specifications close the normalization gap in Section 6.2.

Appendix F – Two-loop RGE setup
Configuration:

Fermions: Standard model + ΣF  at 103GeV , NR at 1015 GeV.

Results:

Spacing invariant:

S = log10 μ23 − 2 log10 μ13 + log10 μ12 ≈ −0.10.

Pyr@ate Configuration:

Fermions: Standard Model + ΣF  at 103GeV , NR at 1015 GeV.
Scalars: Higgs H, PQ field Φ at 1016 GeV.

Normalization: gGUT
1 = √3/5 g1.

Initial values: gGUT
1 = 0.462,  g2 = 0.652,  g3 = 1.221.

Integration: Two-loop beta functions, 17 decades, threshold matching.

α3(1 PeV) = 0.052865 vs. φ0 = 0.053171, deviation −0.57%.
α3(μ) = c3 = 0.039789 at μ ≃ 2.5 × 108GeV , deviation −0.066%.
Near unification: Minimal spread at 2.0 × 1014 GeV with (40.5,37.3,40.4).

---
Author: "E8 Cascade v2 – 2-Loop + Gravity Mock"
Date: 2025-07-02
Name: E8Cascade2LoopGravity
# ------------------------------------------------------------
#  Purpose
#  – 2‑Loop RGEs for the full E8‑cascade mini‑model
#  – Threshold decoupling à la cascade (Σ_F, N_R, Φ)
#  – Dummy R^3 term via gauge‑singlet spurion to mock α³‑piece
# ------------------------------------------------------------
Settings:
  LoopOrder: 2                  # 2-loop RGEs
  ExportBetaFunctions: true

# ------------------------------------------------------------
# Thresholds for cascade decoupling
# ------------------------------------------------------------
Thresholds:
  - Scale: MSigma
    Fields: [SigmaF]            # n = 6

  - Scale: MNR
    Fields: [NR]                # n = 5



  - Scale: MPhi
    Fields: [phiR, phiI]        # n = 4

# ------------------------------------------------------------
Groups: {U1Y: U1, SU2L: SU2, SU3c: SU3}

# ------------------------------------------------------------
Fermions:
  Q   : {Gen: 3,  Qnb: {U1Y:  1/6, SU2L: 2, SU3c: 3}}
  L   : {Gen: 3,  Qnb: {U1Y: -1/2, SU2L: 2}}
  uR  : {Gen: 3,  Qnb: {U1Y:  2/3, SU3c: 3}}
  dR: {Gen: 3, Qnb: {U1Y: -1/3, SU3c: 3}}
  eR: {Gen: 3, Qnb: {U1Y: -1}}
  # --- BSM fermions --------------------------------------------------------
  SigmaF : {Gen: 1, Qnb: {U1Y: 0, SU2L: 3, SU3c: 1}}     # EW triplet
  NR     : {Gen: 3, Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}     # RH neutrinos

# ------------------------------------------------------------
RealScalars:
  phiR : {Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}               # PQ‑scalar (Re)
  phiI : {Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}               # PQ scalar (Im)
  # Gravity spurion R3 – mocks R³ → α³ in β_α
  R3   : {Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}, External: True}  # pure spurion, no dynamics

ComplexScalars:
  H    : {RealFields: [Pi, Sigma], Norm: 1/sqrt(2), Qnb: {U1Y: 1/2, SU2L: 2}}

# ------------------------------------------------------------
Potential:
  Definitions:
    Htilde[i]: Eps[i,j]*Hbar[j]

  Yukawas:
    Yu: Qbar[i,a] Htilde[i] uR[a]
    Yd: Qbar[i,a] H[i]       dR[a]
    Ye  : Lbar[i]   H[i]       eR
    yN  : Lbar[i]   Htilde[i]  NR            # seesaw

  QuarticTerms:
    lambda    : (Hbar[i] H[i])**2
    lPhi      : (phiR**2 + phiI**2)**2
    lHphi     : (Hbar[i] H[i])*(phiR**2 + phiI**2)

  
  TrilinearTerms:
    cR3       : R3 * (Hbar[i] H[i])          # mimics α³ effect

  ScalarMasses:
    mu2       : -Hbar[i] H[i]
    MPhi      : phiR*phiR + phiI*phiI         # PQ scalar mass for threshold

# ------------------------------------------------------------
Vevs:
  vSM : Pi[2]     # 246 GeV
  vPQ : phiR      # 1.0e16 GeV (decoupling scale)
  # no VEV for R3 ⇒ purely spurionic

# ------------------------------------------------------------
Parameters:
  # --- Standard input ------------------------------------------------------
  - {name: vSM,      value: 2.46e2}



Gauge Couplings CSV

  - {name: vPQ,      value: 1.0e16}
  - {name: MPl,      value: 1.22e19}
  # Mass parameters for thresholds
  - {name: MSigma,   value: 1.0e3}     # for n = 6 threshold (TeV)
  - {name: MNR,      value: 1.0e15}    # for n = 5 threshold (seesaw)
  - {name: MPhi,     value: 1.0e16}    # for n = 4 threshold (PQ/Axion)
  # gauge couplings at M_Z (SM‑like)
  # NOTE: g1 needs external rescaling by sqrt(3/5) for GUT normalization
  - {name: g1,  value: 0.357}          # → g1_GUT = 0.357 * sqrt(3/5) ≈ 0.462
  - {name: g2,  value: 0.652}
  - {name: g3,  value: 1.221}
  # Yukawas (third generation shown, rest negligible here)
  - {name: Yu33, value: 0.95}
  - {name: Yd33, value: 0.024}
  - {name: Ye33, value: 0.010}
  - {name: yN,   value: 0.10}
  # Quartics – tuned for vacuum stability
  - {name: lambda,  value: 0.130}
  - {name: lPhi,    value: 0.10}
  - {name: lHphi,   value: 0.01}
  # Gravity portal coupling
  - {name: cR3,     value: 0.01}  # (0 … 0.02) ≈ (α_exp – α_c) scale

Substitutions: {
  # Rename gauge couplings
  g_U1Y : g1,
  g_SU2L : g2,
  g_SU3c : g3
}

# ------------------------------------------------------------
# POST-PROCESSING NOTES:
# 
# 1. Hypercharge normalization:
#    PyR@TE gives b1 = 41/6. For GUT normalization (b1 = 41/10):
#    - g1_GUT = sqrt(3/5) * g1_PyRATE
#    - β(g1_GUT) = (3/5) * β(g1_PyRATE)
#
# 2. Thresholds:
#    If PyR@TE doesn't apply thresholds automatically, implement
#    in your numerical solver by switching off β-functions below
#    the respective mass scales.
#
# 3. Mass parameters:
#    MSigma, MNR cannot be declared in the Potential due to PyR@TE
#    limitations. They are defined as Parameters and referenced in
#    the Thresholds block, but actual implementation must be done
#    in the numerical solver.
# ------------------------------------------------------------

...

mu_GeV,log10_mu,g1_SM,g1_GUT,g2,g3,alpha1_GUT,alpha2,alpha3,alpha1_inv_GUT,alpha2_inv,alpha3_in
v
100.0,2.0,0.357,0.4608850181986826,0.652,1.221,0.016903448618432473,0.03382870146406854,0.11863
73572570322,59.15952552484134,29.56069718082909,8.429048177746097
125.89254117941675,2.1,0.35746371431970303,0.4614836708112185,0.6513317639734438,1.202227081166
2163,0.016947389581367798,0.03375939479900433,0.11501729489323569,59.0061375056495,29.621384090
377504,8.694344628155667



158.48931924611142,2.2,0.3579289916549,0.4620843412680804,0.6506642688533751,1.184307288999549,
0.016991535981054975,0.03369023592848148,0.11161406883661186,58.85283126345778,29.6821904756863
8,8.95944400578987
199.52623149688807,2.3000000000000003,0.3583958597307617,0.4626870653623098,0.6499975889422324,
1.1671827219078996,0.017035891031971083,0.03362123230298032,0.10840962344080962,58.699600632764
685,29.74310968106175,9.224273346415488
251.18864315095823,2.4000000000000004,0.3588643404776391,0.46329187140586814,0.6493317906080385
,1.150797556516267,0.017080457412698796,0.033552390521767436,0.10538723205971158,58.54644145867
726,29.804135694928814,9.488815489844233
316.22776601683825,2.5000000000000004,0.35933445592198926,0.46389878783478916,0.648666935728635
4,1.135099943806378,0.01712523782393323,0.03348371669277199,0.10253174301233577,58.393349644608
065,29.865262843293213,9.753077150748215
398.1071705534977,2.6000000000000005,0.35980622795738965,0.46450784291355984,0.6480030848146618
,1.1200392038850713,0.01717023496678174,0.03341521675713614,0.09982896866069213,58.240321226508
67,29.926485507128735,10.017132435765133
501.18723362727303,2.7000000000000006,0.3602796769210863,0.465119062897452,0.6473402888504939,1
.105572740017677,0.01721545140674144,0.03334689564942538,0.0972668339157149,58.08735283051641,2
9.987798879780627,10.280996715350422
630.9573444801943,2.8000000000000007,0.3607548224170887,0.4657324730951329,0.6466785933349767,1
.0916625708748768,0.017260889651579795,0.033278757718624714,0.09483463485371016,57.934441398185
72,30.049198604560356,10.544670747586872
794.328234724283,2.900000000000001,0.3612316836244237,0.4663480982666198,0.6460180398869467,1.0
782739081199126,0.01730655218049873,0.033210806896184726,0.09252270656442683,57.78158408275071,
30.110680632540742,10.808157663477608
1000.000000000002,3.000000000000001,0.36171027953367374,0.4669659629286493,0.6453586717818974,1
.0653748031834211,0.01735244146664861,0.033143047266820866,0.09032229798802527,57.6287781706107
44,30.17224071007764,11.071463218668084
1258.92541179417,3.100000000000001,0.36219063011013297,0.4675860928563052,0.6447005642829321,1.
0529362995463463,0.01739856008884509,0.03307548617989942,0.08822554140138977,57.47602071053798,
30.23387153134935,11.33458615403008
1584.8931924611175,3.200000000000001,0.3626727535667687,0.4682085115624272,0.6440437503246166,1
.0409310268908998,0.01744491046993386,0.03300812661519211,0.0862251668358421,57.32330938146634,
30.295569683731955,11.597542071490894
1995.262314968885,3.300000000000001,0.36315666656054035,0.4688332405510576,0.6433882266311206,1
.029333649003037,0.017491494894670893,0.03294096783159755,0.08431454025072443,57.17064241917188
,30.357335130899905,11.86035050450753
2511.8864315095875,3.4000000000000012,0.363642386520315,0.4694603023227668,0.6427340161365501,1
.018121484034628,0.017538315733354858,0.03287401177130456,0.08248772760755742,57.01801787603653
,30.419165356413586,12.123015495803054
3162.277660168389,3.5000000000000013,0.36412993013869754,0.47008971842761527,0.6420811249779966
,1.0072730569953081,0.0175853752967339,0.032807258651270765,0.08073922395614568,56.865434096577
29,30.48105940912761,12.385553774249304
3981.0717055349855,3.6000000000000014,0.3646193146411053,0.470721511103521,0.6414295782139958,0
.996769309697644,0.017632675958354403,0.03274071061835906,0.07906412179343353,56.71288931764198
,30.543014525752504,12.647961898731321
5011.8723362727405,3.7000000000000015,0.3651105570129519,0.4713557022785588,0.6407793948222485,
0.9865921261391148,0.017680220080143107,0.032674369189747615,0.0774578478727556,56.560381910806
27,30.605028491683154,12.910247669710069
6309.573444801956,3.8000000000000016,0.36560367422714635,0.47199231386465984,0.6401305968578942
,0.9767251426282882,0.017728010034397362,0.03260823618916798,0.07591627157264924,56.40791031027
829,30.667098772186478,13.172406643324608
7943.282347242846,3.9000000000000017,0.36609868309201166,0.472631367561276,0.6394832020703174,0
.9671526864410055,0.017776048189092293,0.032542312993922504,0.0744355190209989,56.2554730591706
1,30.729223217377225,13.434446527038945
10000.00000000004,4.000000000000002,0.3665956003458487,0.4732728849774607,0.6388372276588368,0.
9578603398623886,0.017824336917052725,0.032476600919002924,0.07301204610604896,56.1030687791415
,30.791399706330516,13.69637002841304
12589.254117941713,4.100000000000001,0.36709444258368096,0.47391688753729705,0.638192687426935,
0.9488345695998794,0.01787287858885837,0.03241110092836328,0.07164256634601088,55.9506961919039
7,30.85362642294233,13.958182279098114
15848.931924611174,4.200000000000001,0.36759522633825464,0.4745633965844687,0.6375495937968129,
0.9400627215664621,0.0179216755807319,0.032345813841111924,0.07032403767155718,55.7983540933599



,30.91590166542626,14.21988886176332
19952.62314968883,4.300000000000001,0.3680979680789172,0.47521243338081187,0.6369079576761749,0
.9315330410484155,0.017970730274473025,0.03228074031874498,0.06905365385080682,55.6460413531705
5,30.978223861220243,14.481492929549246
25118.864315095823,4.4,0.36860268427046855,0.47586401918229176,0.6362677892163253,0.92323448812
66177,0.018020045063255705,0.03221588094271522,0.06782880644093468,55.4937568962621,31.04059149
517449,14.742998623612815
31622.776601683792,4.5,0.369109391427965,0.4765181753097544,0.6356290984236973,0.91515651838318
21,0.01806962235707683,0.03215123627670643,0.06664704383159217,55.34149968598307,31.10300305075
6715,15.00441643783723
39810.71705534969.4.6,0.3696181059823213,0.47717492297541947,0.6349918934784351,0.9072895290376
607,0.018119464569699782,0.03208680669680299,0.06550612860015177,55.18926876416905,31.165457175
258148,15.265747211287389
50118.72336272715,4.699999999999999,0.37012884433109566,0.47783428334844363,0.6343561813661271,
0.8996246924963989,0.01816957412367105,0.03202259245621778,0.06440400432122,55.03706323513741,3
1.227952620239257,15.526984859705648
63095.73444801917,4.799999999999999,0.37064162315466015,0.4784962779630947,0.6337219709103329,0
.8921527265668489,0.018219953481469958,0.03195859399177499,0.06333861318805706,54.8848821714621
4,31.290487943786406,15.788157486664975
79432.82347242789.4.899999999999999,0.3711564588323318,0.4791609279649799,0.6330892668958811,0.
884866098456764,0.01827060508830687,0.031894811330869154,0.062308206261512074,54.73272478753299
5,31.353062089825173,16.04925033153622
99999.99999999959,4.999999999999998,0.3716733677875243,0.47982825455663525,0.6324580734371887,0
.8777576967730826,0.018321531406035815,0.03183124443256592,0.0613111452692641,54.58059033594548
,31.41567405944455,16.310248252715482
125892.5411794161,5.099999999999998,0.37219236687567253,0.48049827949833357,0.6318283979587457,
0.8708194722098795,0.018372734951573162,0.03176789358822144,0.06034570970820952,54.428477993929
54,31.478322515244425,16.571186333466198
158489.31924611045,5.1999999999999975,0.37271347258136656,0.4811710240715891,0.6312002428332707
,0.8640452588530023,0.018424218217911327,0.03170475857981825,0.05941048790119769,54.27638709944
49,31.541006612065885,16.832044901954767
199526.23149688664,5.299999999999997,0.3732367015343722,0.48184650974533727,0.6305736106550318,
0.8574289406095496,0.018475983725043374,0.031641839211726974,0.0585041147325978,54.124316998858
6,31.6037254759004,17.092814831412394
251188.64315095617,5.399999999999997,0.37376207067083395,0.48252475838404646,0.6299485062355947
,0.8509640409938682,0.018528034036138896,0.03157913551069447,0.05762521425535257,53.97226700088
643,31.666478002899854,17.353514653650315
316227.76601683535,5.4999999999999964,0.3742895967865185,0.48320579167095845,0.6293249312977277
,0.8446450135402259,0.01858037171349689,0.03151664719329038,0.05677257346549697,53.820236506549
236,31.72926339109102,17.614138992796253
398107.17055349366,5.599999999999996,0.3748192968320331,0.4838896314892128,0.6287028878784606,0
.8384663681409104,0.018632999347895383,0.031454374007961965,0.05594501961450066,53.668224923377
73,31.792080800809217,17.87469209753937
501187.23362726736,5.699999999999996,0.3753511878460635,0.4845762998356586,0.6280823779271135,0
.8324230450235482,0.018685919552150067,0.031392315694701044,0.055141468221102,53.5162316849928,
31.85492939499197,18.135171809177756
630957.3444801866,5.799999999999995,0.3758852869877027,0.4852658188625893,0.6274634029320071,0.
8265100092925758,0.01873913496449809,0.031330471947814006,0.05436086650828495,53.36425624205883
,31.91780837727764,18.395586094044205
794328.2347242724,5.899999999999995,0.37642161153066916,0.4859582108702798,0.6268459642239718,0
.8207224425923397,0.018792648248205927,0.031268842446432875,0.053602217254761914,53.21229806424
258,31.980716961720443,18.65594468316816
999999.9999999878,5.999999999999995,0.3769601787648051,0.4866534981798203,0.6262300620026465,0.
8150561455854235,0.01884646208190269,0.031207426757549686,0.05286462900413543,53.06035666822844
4,32.043654472667484,18.91623981550638
1258925.4117941507,6.099999999999994,0.37750100617156174,0.48735170335966727,0.6256156968848363
,0.8095067860513386,0.018900579177266383,0.03114622449074241,0.05214721551458755,52.90843156821
353,32.10662018753605,19.17647932170534
1584893.1924610916,6.199999999999994,0.378044111334557,0.48805284911017394,0.6250028690779649,0
.8040702902559606,0.018955002270295934,0.0310852352157535,0.051449145621531925,52.7565223016133
94,32.16961342126876,19.436668732191563
1995262.3149688502,6.299999999999994,0.37858951191703905,0.48875695823449555,0.6243915780472867
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,0.5783782788165945,0.02372676645792362,0.027304016368967367,0.026620369848442946,42.1464931503
9923,36.624648421195616,37.56521812781993
19952623149687.36,13.299999999999969,0.42372210353771106,0.5470228834738432,0.5852460671163854,
0.576400623411331,0.02381228790929603,0.027256315254924803,0.026438634420771746,41.995124693986
76,36.68874499898937,37.8234361156846
25118864315093.973,13.399999999999968,0.42448779511609597,0.548011387050982,0.584735438733695,0
.5744432280891915,0.023898426168839835,0.027208773623180534,0.02625937372247067,41.843759623964
63,36.75285089468528,38.08163936310027
31622776601681.465,13.499999999999968,0.425257635744649,0.5490052470288551,0.5842260714044826,0
.5725057487436309,0.023985187968338827,0.027161390745447257,0.026082537464714096,41.69239787989
28,36.81696601517425,38.33982799230541
39810717055346.76,13.599999999999968,0.4260316633667938,0.5500045123922123,0.5837179606292917,0
.5705878462519686,0.024072580137508667,0.027114165897023788,0.025908076427289324,41.54103940199
792,36.88109026838129,38.59800254976423
50118723362723.45,13.699999999999967,0.4268099163996145,0.5510092327372956,0.5832111019220698,0
.5686891875776724,0.024160609604718875,0.027067098356664238,0.02573594254002076,41.389684132998
33,36.94522356341858,38.856163843424305
63095734448014.52,13.799999999999967,0.4275924338217419,0.5520194583853011,0.5827054907820798,0
.5668094609991373,0.02424928340787606,0.0270201874039587,0.025566090236987336,41.23833200263577
,37.009365814150165,39.11431082071618
79432823472422.05,13.899999999999967,0.4283792550971632,0.5530352402840172,0.5822011227240287,0
.5649483596618955,0.024338608686784897,0.026973432322121977,0.025398474935950505,41.08698294422
099,37.07351693539797,39.372442736100695
99999999999992.23,13.999999999999966,0.4291704201035251,0.5540566299152645,0.5816979933066017,0
.563105565998417,0.02442859267593827,0.026926832400620125,0.025233051625588043,40.9356369098160
26,37.13767683929172,39.63056133035972
125892541179406.83,14.099999999999966,0.4299659692718217,0.5550836794752317,0.5811960980859944,
0.5612807769575584,0.024519242721337993,0.02688038693084578,0.025069777125791528,40.78429384483
987,37.20184544116365,39.88866733766095
158489319246098.78,14.199999999999966,0.4307659435485108,0.5561164418255689,0.5806954326324499,
0.5594736949522604,0.02461056627721483,0.026834095207638773,0.02490860925157403,40.632953697039
824,37.26602265744862,40.14676170396016
199526231496871.97,14.299999999999965,0.43157038444227863,0.5571549705537592,0.580195992519038,
0.5576840344416165,0.02470257091240424,0.026787956528235658,0.024749507380889726,40.48161640932
1035,37.33020840712344,40.40484461408503
251188643150937.66,14.399999999999965,0.4323793341148796,0.5581993200903937,0.5796977732973269,
0.5559115362351872,0.02479526432185108,0.026741970190015438,0.024592433694915768,40.33028190462
7235,37.394402614859196,40.662913333654316
316227766016812.06,14.499999999999964,0.43319283507566236,0.5592495453148055,0.5792007705909139
,0.5541559123604148,0.024888654292706935,0.026696135499121285,0.024437348270876534,40.178950144
88701,37.458605198977786,40.92097018528645



398107170553464.4,14.599999999999964,0.4340109304668542,0.5603057019233705,0.5787049800132715,0
.5524168944350036,0.024982748738057215,0.02665045176285686,0.024284213367741416,40.027621079047
25,37.522816082004105,41.17901555454033
501187233627230.44,14.699999999999964,0.43483366399336093,0.5613678463388795,0.5782103971913113
,0.5506942197559197,0.025077555690030253,0.02660491829185026,0.024132992172461582,39.8762946580
77725,37.58703518763764,41.43704986326191
630957344480140.1,14.799999999999963,0.43566107993079006,0.5624360357208961,0.5777170177656836,
0.5489876310936707,0.025173083301870187,0.02655953440006793,0.023983648767246676,39.72497083524
555,37.65126244070914,41.695073577196986
794328234724213.9,14.899999999999963,0.43649322418809094,0.5635103293376189,0.5772248412228824,
0.5472968946535817,0.025269339972143184,0.026514299756849317,0.023836149679939116,39.5736493751
87316,37.715497266401485,41.95308442963907
999999999999914.1,14.999999999999963,0.43733014205687815,0.564590785660271,0.5767338626888752,0
.5456217609613652,0.02536633408601227,0.026469213632132917,0.023690460449607122,39.422330266927
645,37.77973965898355,42.211083323059
1258925411794058.0,15.099999999999962,0.43817187986142503,0.5656774644932321,0.5762440788952727
,0.5439619929422317,0.02546407420690337,0.02642427544532473,0.023546548072326912,39.27101342364
5215,37.84398940546659,42.46907007041301
1584893192460974.8,15.199999999999962,0.4390184846256716,0.5667704265441477,0.5757554869405991,
0.5423173598407923,0.025562569039462975,0.026379484651154472,0.02340438045402066,39.11969874609
318,37.908246246055306,42.72704427979033
1995262314968703.2,15.299999999999962,0.4398700040510836,0.5678697333953453,0.5752680841809946,
0.5406876364957244,0.0256618274283601,0.026334840729520217,0.023263926334090596,38.968386128840
25,37.97250988797678,42.98500543885473
2511886431509356.0,15.399999999999961,0.440726485221869,0.568975445832276,0.5747818614479898,0.
5390725888488392,0.02576185820829749,0.02629034256494939,0.023125154029448376,38.81707569052281
,38.036780902703505,43.24295521346864
3162277660168095.0,15.499999999999961,0.44158797649927073,0.5700876262890359,0.5742968128500109
,0.5374719944973841,0.02586267042581896,0.026245989344991127,0.022988033198615598,38.6657674375
9956,38.10105943637607,43.50089419830065
3981071705534611.0,15.59999999999996,0.44245452754768244,0.5712063388820816,0.5738129358590517,
0.5358856427178413,0.02596427334446479,0.02620178056685263,0.022852534823616488,38.514461265028
46,38.16534519280269,43.758821842667984
5011872336272264.0,15.69999999999996,0.4433261881729126,0.5723316479104353,0.5733302252203173,0
.5343133214369904,0.026066676310308613,0.026157715480361256,0.022718630082325275,38.36315716263
8686,38.22963824003599,44.01673852588426
6309573444801349.0,15.79999999999996,0.44420300879209695,0.5734636184623394,0.5728486753467122,
0.5327548221323761,0.026169888808160856,0.026113793307314243,0.022586290760912245,38.2118551336
0525,38.29393869483943,44.27464476507123
7943282347242074.0,15.89999999999996,0.44508504113563396,0.5746023173214512,0.5723682829276662,
0.5312099451733949,0.026273920545834443,0.026070013479247627,0.02245548969633913,38.06055507610
734,38.35824637359795,44.53254030630327
9999999999999060.0,15.99999999999996,0.44597233854283075,0.5757478133485199,0.5718890480020153,
0.529678501923916,0.026378781491357944,0.02602637573421034,0.02232620093822301,37.9092567383225
76,38.42256064433709,44.79042371637779
1.2589254117940478e+16,16.09999999999996,0.4468649530767345,0.5769001737566505,0.57141096300609
43,0.52816029149117,0.026484481533606708,0.02598287911948573,0.02219839777678426,37.75796021270
34,38.48688189639673,45.04829628045631
1.5848931924609682e+16,16.19999999999996,0.44776293839470055,0.5780594678171909,0.5709340235808
857,0.5266551233526369,0.026591030822476998,0.025939522976490072,0.022072054650102767,37.606665
445805696,38.55121009381461,45.306158210121325
1.995262314968703e+16,16.29999999999996,0.44866634892085605,0.5792257657913872,0.57045822539881
13,0.5251628105059724,0.026698439673046998,0.025896306651445683,0.021947146555059336,37.4553723
8303611,38.615545199538104,45.564009767341545
2.5118864315093664e+16,16.399999999999963,0.44957523979803876,0.5803991388683366,0.569983564108
0371,0.5236831698147449,0.026806718561537917,0.025853229490308827,0.021823649068080916,37.30408
097896744,38.679887182947624,45.82185118906588
3.162277660168121e+16,16.499999999999964,0.45048966570002474,0.5815796576315808,0.5695100341103
674,0.5222160313513866,0.02691587798503866,0.025810290727998852,0.021701539113351972,37.1527913
95318985,38.74423618619708,46.079681020630716
3.98107170553466e+16,16.599999999999966,0.4514096839283916,0.5827673960571381,0.569037631724153
6,0.5207612139159699,0.02702592883255785,0.0257674897753082,0.021580792914809643,37.00150348931



988,38.808592094921636,46.337500385065006
5.011872336272346e+16,16.699999999999967,0.4523353519020354,0.5839624282724848,0.56856635260848
86,0.5193185448210264,0.027136882087834793,0.02572482598508857,0.021461387640983674,36.85021723
4362766,38.87295488722261,46.59530952650764
6.309573444801478e+16,16.79999999999997,0.45326672786474603,0.5851648294700302,0.56809619248085
27,0.5178878542720645,0.027248748915412388,0.025682298717377122,0.02134330092859517,36.69893260
4365616,38.93732453642794,46.853108773827365
7.943282347242269e+16,16.89999999999997,0.4542038709010365,0.5863746759275525,0.567627147126805
5,0.5164689752089354,0.02736154066443442,0.025639907340242556,0.02122651086293546,36.5476495736
89334,39.00170100967845,47.11089855780979
9.999999999999346e+16,16.99999999999997,0.45514684095197233,0.5875920450286349,0.56715921240967
98,0.5150617431471971,0.027475268872494595,0.025597651230627183,0.021110995958585912,36.3963681
1711411,39.06608426649379,47.36867942951297
1.258925411794089e+17,17.099999999999973,0.4560956988310008,0.5888170152830999,0.56669238428027
45,0.5136659960194805,0.027589945269537855,0.02555552977518473,0.020996735140470013,36.24508820
987416,39.130474257318404,47.62645207980725
1.58489319246102e+17,17.199999999999974,0.45705050623978033,0.590049666347446,0.566226658786547
1,0.5122815740168544,0.0277055817818156,0.025513542371114174,0.020883707725229197,36.0938098277
4902,39.194870922047116,47.88421736011559
1.9952623149687686e+17,17.299999999999976,0.45801132609043466,0.591290079440876,0.5657620311590
59,0.5109083381552314,0.0278221905731233,0.02547168834376663,0.020771894925514376,35.9425328991
1747,39.25927431680113,48.141972775516386
2.5118864315094486e+17,17.399999999999977,0.4589782223177894,0.5925383371028945,0.5652984964347
516,0.5095461576755538,0.027939784024471732,0.025429967003061136,0.02066127880274687,35.7912573
3842917,39.323684528557386,48.39971472951869
3.162277660168224e+17,17.49999999999998,0.45995125913548957,0.593794522232961,0.564836051758103
8,0.5081948634606726,0.028058374645657466,0.025388377850413486,0.02055183848809172,35.639983164
69724,39.38810135456187,48.65744738989782
3.9810717055347904e+17,17.59999999999998,0.4609305020608859,0.5950587194136115,0.56437469334727
76,0.5068543095382096,0.028177975201969203,0.025346920305443867,0.020443555182424963,35.4887103
43180216,39.45252472290394,48.91517111757968
5.0118723362725094e+17,17.69999999999998,0.4619160175899799,0.5963310144908148,0.56391441753199
68,0.5055243520911484,0.028298598677115247,0.02530559379946059,0.020336410440191965,35.33743883
9637265,39.51695454865461,49.17288638233053
6.309573444801684e+17,17.799999999999983,0.462907873213654,0.5976114945949255,0.563455220762029
7,0.5042048493237097,0.02842025827758806,0.025264397776173477,0.020230386153902956,35.186168620
73313,39.58139073249895,49.430593780686415
7.943282347242529e+17,17.899999999999984,0.46390613743390235,0.5989002481616377,0.5629970996156
728,0.5028956613272277,0.028542967437091008,0.025223331692403983,0.020125464538883225,35.034899
654494936,39.64583315935025,49.68829405492524
9.999999999999672e+17,17.999999999999986,0.46491087978006085,0.6001973649529381,0.5625400508082
339,0.5015966499460269,0.028666739821028332,0.025182395018791826,0.02002162811827172,34.8836319
1082006,39.710281696946275,49.94598811309461
1.2589254117941302e+18,18.099999999999987,0.4659221708250379,0.6015029360780596,0.5620840712005
146,0.5003076786432971,0.02879158933105975,0.025141587240498284,0.019918859708261846,34.7323653
6203375,39.774736194427355,50.203677050108695
1.584893192461072e+18,18.19999999999999,0.46694008310652235,0.6028170551827561,0.56162915157516
77,0.49902865680474995,0.028917530221811073,0.025100907300841056,0.019817145932954985,34.581099
84945219,39.839197365048754,50.461353182904446
1.9952623149688338e+18,18.29999999999999,0.46796468922556084,0.6041398159945754,0.5611752898510
918,0.49775944544058653,0.029044576868750265,0.025060354783712248,0.019716469705438104,34.42983
53706066,39.90366491738341,50.719018918695404
2.5118864315095306e+18,18.39999999999999,0.46899606289790247,0.6054713136801408,0.5607224839636
066,0.4964999078793188,0.02917274390034773,0.025019929275605764,0.019616814280687442,34.2785719
2370856,39.96813855804909,50.976676726989766
3.1622776601683277e+18,18.499999999999993,0.47003427918689655,0.6068116451458193,0.560270730380
8533,0.49524992027284337,0.029302046229945075,0.024979630233315574,0.019518164079133003,34.1273
0947704448,40.032618203703045,51.234326955428486
3.98107170553492e+18,18.599999999999994,0.47107941429830147,0.6081609087728219,0.55982002563709
9,0.49400936058968054,0.02943249903331343,0.024939457121072987,0.019420503806513764,33.97604800
286042,40.09710376394016,51.49197003141563
5.011872336272674e+18,18.699999999999996,0.47213154559736803,0.609519204439258,0.55937036633534
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36,0.4927781085227453,0.029564117753756978,0.024899409410749168,0.01932381844299423,33.82478747
815571,40.16159514081873,51.749606474001304
6.309573444801891e+18,18.799999999999997,0.4731907516259234,0.6108866335421905,0.55892174914992
88,0.49155604539711834,0.029696918107292445,0.024859486582056892,0.019228093232452843,33.673527
88552283,40.226092228380175,52.00723690647689
7.943282347242789e+18,18.9,0.4742571121194545,0.6122632990196903,0.5584741708291442,0.490343054
07781703,0.02983091608790588,0.024819688122751208,0.019133313671938216,33.5222692140327,40.2905
94912163314,52.264862069691844
1e+19,19.0,0.47533070833720714,0.6136493057769927,0.5580276276276446,0.48913902294812694,0.0299
6612801235516,0.02478001347818889,0.019039465818178024,33.37101141621286,40.355103151182284,52.
522481961928









Appendix H: References:
1. Nilpotent orbits in semisimple Lie algebras (especially E8)

2. Chern-Simons term in 11D supergravity and topological fixed points

Collingwood, D.H. and McGovern, W.M., Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold,
New York (1993). – Referenced for the general classification of nilpotent orbits in semisimple Lie algebras,
including detailed tables and dimensions for E8 orbits, which serve as the basis for the γ(n) damping function and
the parabolic cascade.
Djouadi, A. et al., "Induced Nilpotent Orbits of the Simple Lie Algebras of Exceptional Type," arXiv: (from
publication, e.g., similar to iris.unitn.it/handle/11572/77393) (200x). – Referenced for the induction of nilpotent
orbits in E8 and their dimensions, which motivate the monotonic decay sequence in the cascade (e.g., from 248 to
206).
Landsberg, J.M. and Manivel, L., "Series of Nilpotent Orbits," Experimental Mathematics 13(1) (2004), 69–78. –
Referenced for the organization of nilpotent orbits in series within exceptional algebras such as E8, including
dimension formulas that support the quadratic smoothing of γ(n).

Cremmer, E., Julia, B., and Scherk, J., "Supergravity Theory in Eleven Dimensions," Physics Letters B 76(4)
(1978), 409–412. – Referenced for the original formulation of 11D supergravity, including the Chern-Simons term,
which derives the normalization 1/(8π) for c₃ and topological fixed points.

Troncoso, R. and Zanelli, J., "Higher-Dimensional Supergravities as Chern-Simons Theories," International
Journal of Theoretical Physics 38(4) (1999), 1181–1193 (or extended version arXiv:1103.2182). – Referenced for
the interpretation of 11D supergravity as a Chern-Simons theory, which explains the topological trace of c₃ = 1/(8π)
and the Möbius reduction to φ₀.
Duff, M.J., "Eleven-Dimensional Supergravity, Anomalies and the E8 Yang-Mills Sector," Nuclear Physics B 325(2)
(1989), 505–522. – Referenced for the connection between Chern-Simons terms in 11D and E8 symmetries,
relevant for the topological correction in φ₀ (e.g., 3/(256π⁴)).



3. E8 in Grand Unified Theories (GUTs) and String Theory

4. Theoretical derivations of the fine structure constant (α)

5. Other related topics (e.g., RG flows, genetic algorithms in physics)

Gross, D.J., Harvey, J.A., Martinec, E., and Rohm, R., "Heterotic String Theory (I). The Free Heterotic String,"
Nuclear Physics B 256 (1985), 253–284. – Referenced for the role of E8 × E8 in heterotic string theories, which
inspire the embedding of E8 as an ordering principle for the scale ladder (γ(n) from orbits).
Lisi, A.G., "An Exceptionally Simple Theory of Everything," arXiv:0711.0770 (2007). – Referenced for the attempt
to use E8 as a unified symmetry for all forces and matter, similar to the E8 cascade in the paper, including orbit
structures for flavor and scales.
Green, M.B., Schwarz, J.H., and Witten, E., Superstring Theory, Cambridge University Press (1987), Volume 2. –
Referenced for the E8 gauge group in string theory, specifically its nilpotent elements and anomalies, which
support the quadratic form of γ(n) and RG confirmation.

Wyler, A., "On the Conformal Groups in the Theory of Relativity and a New Value for the Universal Constant α,"
Lettere al Nuovo Cimento 3(13) (1971), 533–536. – Referenced for an early geometric derivation of α from
conformal groups, which anticipates the parameter-free cubic fixed point equation in the paper (based on
geometry and topology).
Atiyah, M.F., "On the Fine-Structure Constant," (lecture/note, 2018, see e.g.
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