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The core result is a single-parameter normal form for α (parameter = c3). From c3, the following results exactly

[φ0 =
4

3
c3 + 48c4

3, A = 2c3
3, κ =

b1

2π
ln

1

φ0
, b1 =

41

10
, ]

and thus the cubic fixed point equation

[ ]

with exactly one real physical solution α(c3). For c3 = 1
8π , we obtain

[φ0 = 0.0531719521768, κ = 1.914684795, α = 0.007297325816919221, α−1 = 137.03650146488582, ]

i.e., a deviation of 3.67 ppm from CODATA-2022 – without free parameters.

The same structure generates a log-exact E₈ cascade φn+1 = φne
−γ(n), whose anchor steps hit flavor mixtures,

electroweak and hadronic scales, and cosmological constants.

A two-loop RGE analysis confirms both fingerprints:
α3(1 PeV) = 0.052923411 is 0.47% below φ0 = 0.053171952,
and at μ ≃ 2.5 × 108 GeV we obtain α3 = 0.039713807, i.e. 0.19% below c3 = 1/(8π).
A color-adjacent bridge G8 above MG8 = 1.8 × 1010 GeV

reduces the slope of α−1
3  from 7

2π  to 5
2π  and creates a narrow unification corridor with a minimum relative spread of

1.23% at μ⋆ ≈ 1.43 × 1015 GeV.

This results in a consistent picture:
Topology fixes the normalizations, geometry fixes the length scale, E₈ orders the scale ladder, and RG dynamics
confirms the fingerprints.

Info Box: Notation and Conventions

the topological fixed point c3 = 1
8π ,

a geometrically defined length scale φ0 = 1
6π + 3

256π4 = 0.053171952  (reduced Planck units),
and a damping function γ(n) ordered by E₈ for the discrete vacuum conductors φn.

α3 − 2c3
3 α

2 − 8 b1 c
6
3 ln(

1
4
3 c3 + 48c4

3

) = 0



1. Introduction
The question of the origin of natural constants—in particular, the fine structure constant α—is answered here using a
bottom-up approach: constants are invariants of a common framework consisting of topology, geometry, and
symmetry, not external knobs.

1.1 The genetic algorithm
We evolve a genetic algorithm (GA) using Lagrange densities with six coefficients (c0, … , c5) (kinetics, mass, quartic
kinetics, Maxwell, EH term). Hard physical constraints (Lorentz, ghost freedom, correct signs) are strictly enforced;
fitness measures error-invariant δc, δα, δG to target values. Typical populations N =800, tournament selection, elites,
crossover, adaptive mutations. Result: robust clusters at c4 (EM normalization), c3 (quadratic kinetics, trace 1/(8π)2)
and a narrow φ0 valley.

Figure: User interface of the GA-Search application>

1.2 ) Genetic algorithm – setup, validation, results

1.3) Representative high-fitness Lagrangians and patterns**

Indices: (c3 → c₃), (b1 → b₁) in running text, as set in formulas.

Length scale: (ϕ0 = 1
6π + 3

256π4 ), (ϕn+1 = ϕne
− γ(n)).

Topology and couplings: (g = 8c2
₃ = 1

8π2 ), (A = 2c3
₃ = 1

256π3 ).

RG constant: (κ =
b₁
2π ln 1

ϕ0
), (b₁ = 41 ∕ 10) in GUT norm.

Groups: (E8), (E7), (E6) always written as indices (E₈), (E₇), (E₆).
Units: all dimensioned quantities in reduced Planck units unless otherwise specified.

Convergence: ~24 million evaluations, ~15,000 generations; reproducibility via seeds.

Pattern: c3 appears as a square track 8c2
3 = 1

8π2  ⇒ fixed point c3 = 1
8π . Mass term clusters suggest φ0. EM

normalization suggests ln(1/φ0) in the F 2 sector.
Ablations: Without constraints → ghost/tachyon collapse; without separate fine-tuning on c4, α remains stuck at
3–4 digits. Adaptive precision prevents rounding artifacts.



Examples (from the Hall of Fame):

Systematic clusters (robust across seeds/generations):

Brief interpretation. The GA does not "find" random numbers, but rather canonical invariants: the topological
normalization 1/(8π), the geometric length φ0, and a logarithmic fingerprint in the EM term (see below). These
patterns are stable across populations, seeds, and search modes.

1.4) From pattern to first theory iteration

The three GA findings lead directly to the first analytically controlled theory iteration:

L#3566 = −0.57618478(∂tφ)2 + 0.57618478(∇φ)2 − 0.98847468φ2

+ 0.0130338797 (∂tφ)2φ2 − 0.0917012368F 2
μν

Lcan. = −0.50000000(∂tφ)2 + 0.50000000(∇φ)2 − 0.059422638φ2

− 0.039752599 (∂tφ)2φ2 − 0.10047012F 2
μν + 3.2658×108 κR

Quartic kinetic coefficient (here c3 of density):

c
(Lag)
3 ≃ 1

8π2 = 0.0126651 (observed, e.g., 0.0130339,  Δ∼+2.9%).
We interpret this as the square trace of the topological fixed point

, 1
8π2 = 8(c

(Topo)
3 )

2,

which recurs in the nonlinear term (∂tφ)2φ2.

c
(Topo)
3 =

1

8π

Scalar mass term: Frequent peaks in [,0.051,,0.061,] (in M̄P ). We identify the length fixed point

, φ0/√8π = 0.0106063MP .φ0 = 0.053171952  (M̄P )

Maxwell normalization: c4 clusters at -0.091701, which

reproduced (ppm precision). Variants with -0.04585 correspond to an alternative internal F 2 normalization (factor
½).

αmodel =
|c4|

4π
≈ 0.007297352566

1. Fixed points instead of fits.

The recurring value c(Lag)
3 ≈1/(8π2) enforces the topological fixed point c(Topo)

3 = 1/(8π) as the underlying
normalization of nonlinear terms.

2. Geometric scale φ0.

The mass term clusters define φ0 as a geometric Radion fixed point (Möbius reduction). This makes a discrete
scale ladder φn plausible, which will be specified later in the E_8 cascade.

3. EM logarithm ln(1/φ0).

The observed EM normalization allows for a parameter-free fixed-point equation for α, in which topology (1/8π)
and geometry (φ0) are coupled. This equation has exactly one physically real solution and reproduces α at the
ppm level—consistent with the GA outputs.

4. Dynamic testing.

Building on (1)–(3), a 2-loop RG "smoke test" was later formulated (E_8 cascade mock with EH term). The fluxes
show the fingerprints α3(1 PeV) ≈ φ0 and α3(μ) = 1/(8π) at μ∼2.5 × 108 GeV as well as a narrow equilibrium
corridor of the three couplings at 1014–15 GeV – in accordance with the GA structure and without fine tuning.

Bottom line. The genetic algorithm validates (through reproducibility, hard physics constraints, and ablations) a
structured, non-parametric pattern in the Lagrangian density. This pattern – c(Topo)

3 = 1/(8π),φ0 as a length fixed



2.) First 6D→4D models
Following this numerical trail, an analytically controllable intermediate model was developed: a compact 6D "quantum
foam" approach, which was reduced to a 4D effective theory. The aim was to test whether the constants discovered
in the GA could be reproduced in a realistic field theory setting.

Key features of this 6D version:

However, limitations also became apparent:

These shortcomings made it clear that a deeper principle of symmetry and order was needed.

2.1 Findings from the preliminary stage

The 6D phase was the decisive proof of the principle. Three findings emerged:

3. Full-Stack Theory: From Geometry to Dynamics

point, and an EM logarithm in c4 – directly motivates the first analytical theory iteration (fixed point equation for α,
E₈ cascade, 2-loop RG check) and replaces fits with fixed points.

1. Single-parameter structure:
The vacuum value φ0 ≈ 0.058M̄P  was sufficient to fix central cosmological observables. This resulted in
ns ≈ 1 − πφ0 ≈ 0.964, r ≈ 0.008 − 0.010,

in agreement with Planck data. The reheating temperature Trh ∼ 1013 GeV was also stable within the expected
range.

2. Topological trace of c3:

Coefficients such as gn = n/(8π) or quartic terms ∼ 1/(8π2) already appeared here. This clearly indicated that
c3 = 1/(8π) must be a fundamental fixed point.

3. Consistent energy scales:

Inflation scale Einf ∼ 5 × 1016 GeV, reheatingTrh ∼ 1013 GeV, sub-Planck fields, and perturbative stability confirmed
the physical plausibility.

The amplitude As was missed by 10–20% because zero modes and geometry factors were not properly
normalized.

RG tests yielded incorrect values for sin2 θW ,αs and the W/Z masses because threshold treatments were
incomplete.
Yukawa hierarchies remained too steep when modeled solely with powers of φ0.

1. Fixed points instead of fits:

c3 = 1/(8π) and φ0 are invariants, not adjustable knobs. Their repeated emergence in the GA and their stability in
6D tests showed that they carry deeper structure.

2. Discrete scale ladder:

The condition χ = φR = 1 already generated a discrete ladder of scales. This paved the way for the later VEV
cascade φn+1 = φne

−γ(n).

3. Symmetry requirement:

A larger framework was needed to justify the form of γ(n) and the stability of the ladder. Here, the path led
consistently to E₈ and to embedding in an 11D parent model with Möbius compactification.



The numerical evidence from genetic algorithms and 6D precursors suggests that fundamental constants are not
arbitrary inputs. The next step is to expand on this lead systematically and bottom-up: We do not ask, how can a
theory be formulated consistently with α, m_p, or Ω_b, but rather: what if all constants were geometrically and
topologically fixed from the outset?

This perspective changes the view. Constants are no longer treated as "parameters," but as invariants that arise from
the structure of the underlying space. In this view, α is not a number that is measured experimentally and written back
into the theory, but the result of a fixed-point equation enforced by topology, geometry, and symmetry.

3.1 Bottom-up approach: constants as invariants

The hypothesis is:

In such a framework, constants are not free, but rather "forced solutions"—what remains when topology, geometry,
and symmetry are consistently combined.

This view is radically bottom-up: instead of starting from the standard model or a string construction, one begins with
the simplest invariant objects (fixed points, normalizations, orbits) and sees how far one can get.

3.2 Geometric derivation of c₃ and φ₀

3.2.1 The fixed point c₃

Numerics and definition.

The GA runs consistently deliver a quantized topology coefficient.

g = 1
8π2 ≈ 0.012665147955 .

We parameterize this by

1. Topological fixed points determine fundamental normalizations. Example: the Chern–Simons factor 1/(8π).
2. Geometric reductions determine fundamental length scales. Example: the Radion value φ0.

3. Symmetry orders (such as E₈) define the relations between scale levels. Example: the damping γ(n).



g = 8 c2
3 , ⇒ c3 = 1

8π ≈ 0.039788735773 ,

and immediately check the identity 8c2
3 = 1/(8π2) numerically.

Strict derivation from the eleven-dimensional Chern-Simons coupling.

The starting point is

SCS = 1
12 κ2

11
∫M11

C3 ∧ G4 ∧ G4,

G4 = dC3.

We reduce to M11 = M4 × Y7 and choose integer-normalized cohomology forms

ω2 ∈ H 2(Y7, Z),

ω3 ∈ H 3(Y7, Z),

with

n := ∫Y7
ω3 ∧ ω2 ∧ ω2 ∈ Z .

The Kaluza-Klein approach

C3 = a(x)ω3 + A(x) ∧ ω2,

G4 = F ∧ ω2

yields exactly

C3 ∧ G4 ∧ G4

⊃ aF ∧ F ω3 ∧ ω2 ∧ ω2.

After integration over Y7, we are left with

SCS ⊃ n
12 κ2

11
∫M4

aF ∧ F .

We define a dimensionless axion â by rescaling a and a canonical normalization of the four-dimensional gauge field,
so that all dimensional factors are absorbed from κ11 and from the volume of Y7. The Gross gauge invariance of eiS is
then decisive: for â → â + 2π, ΔS = g (2π)∫M4

F ∧ F = 2πZ must apply. Since ∫M4
F ∧ F = 8π2 k with k ∈ Z, it

follows that

g = n
8π2 .

The minimum intersection n = 1 yields

g = 1
8π2 ,

g = 8c2
3 ⇒ c3 = 1

8π .

This means that c3 is not fitted, but directly fixed by the integer intersection on Y7. Additional level arguments are not
necessary.

See the condensed derivation of the normalization in Appendix E, section "Derivation Note on the
Normalization of A and κ," as well as the Möbius geometry in Appendix D.

Explanatory box: ABJ anomaly and the same topology scale

The axial anomaly (∂μj
μ
5 = e2

16π2 F
~
F) uses the same numerical scale (1 ∕ (8π2)) as the reduced Chern Simons

coupling. In our framework,
(g = 1

8π2 = 8c2
₃) is not an additional assumption, but an equivalent parameterization of the same topological

invariant.
See also the detailed derivation in Appendix E.



3.2.2 The length scale φ₀

Definition and normalization.

The two-dimensional Möbius fiber M carries the modulus φ over the metric

gM = φ2 ĝM,

RM = φ−2 R̂M.

We use the dimensionless combination

χ = φRM

as the normalization quantity for fiber curvature and set

χ = 1

as a condition for a unit of topological torsion.

Tree value.

After reduction of the six-dimensional Einstein-Hilbert term, an effective potential arises whose φ-dependence is linear
from the curvature part of the fiber. The stationary condition ∂φVeff = 0 under χ = 1 fixes

φtree = 1

∫

~
M
√ĝ R̂eff

M

.

For the Möbius fiber with orientable double covering ~
M and the edge plus curvature normalization chosen here, the

effective integrated curvature has the value

∫
~

M
√ĝ R̂eff

M
= 6π,

from which it immediately follows that

φtree = 1
6π ≈ 0.053051647697

follows.

Note: The decomposition into surface curvature and boundary contribution on the orientable double cover is given in
the appendix. For the main text, it suffices that the Möbius normalization sets the effective curvature to 6π.

Topological surcharge.

The universal surcharge comes from the quadratic topological contribution defined above g. It is independent of local
details of the fiber and is given by

δtop =
6 c2

3

8π2 = 3
256 π4 ≈ 1.203044795 × 10−4.

This means that

φ0 = φtree + δtop = 1
6π + 3

256 π4 ; ≈ 0.053171952177.

Reference to the reduced Planck norm.

A GA cluster in the range 0.051 to 0.061 in reduced Planck units is consistent with

φ
(M̄P )
0 ≈ 0.059

⇒ φ0 = 0.059
√8π

≈ 0.0117687973MP .

Interpretation.

φ0 is therefore not a free length scale, but a geometric-topological invariant of the reduction from eleven to six
dimensions. The tree value follows from the Möbius normalization, the surcharge from the universal topology scale



g = 1/(8π2).

3.2.3 ABJ link to (c_3)

The axial anomaly provides the following information:

The axial anomaly provides

∂μj
μ
5  =  e2

16π2 F
~
F ,

i.e., the same universal topology scale 1/(8π2) that also appears in the reduced Chern-Simons term. In our
framework, the observed coefficient

g = 1
8π2

so that, of course. The notation

c3 =  1
8π , g = 8 c2

3,

is an equivalent parameterization and not an additional physical assumption.

3.3 From fixed points to concrete structure: 11D → 6D → 4D and E₈

3.3.1 Why 11 dimensions?

Motivation.

Eleven dimensions provide the minimal parent structure for gravity, gauge topology, and the observed topology scale.
After reduction, the Chern-Simons term of eleven-dimensional supergravity generates exactly the quantized coupling
g = 1/(8π2).

Reduction approach.

With M11 = M4 × Y7, integer-normalized ω2,ω3 and

n =  ∫Y7
ω3 ∧ ω2 ∧ ω2 ∈ Z,

and

C3 = aω3 + A ∧ ω2,

G4 = F ∧ ω2,

we obtain

Topological unit form – everything from (c3)

c3 =
1

8π
, φtree =

4
3
c3, δtop = 48 c4

3,

φ0 =
4

3
c3 + 48 c4

3, A = 2 c3
3, κ =

b1

2π
ln

1

φ0
= 4 b1 c3 ln

1

φ0
.

.

This reduction eliminates apparent degrees of freedom: (φ0) and (A) are not inputs, but exact functions of (c3).

 α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1
4
3 c3 + 48c4

3

= 0 



SCS ⊃
1

12κ2
11

(∫

Y7

ω3 ∧ ω2 ∧ ω2)∫
M4

aF ∧ F ∫
M4

aF ∧ F = ∫

M4

aF ∧ F ∫
M4

aF ∧ F
n

12κ2
11

∫

M4

aF ∧ F

After canonical normalization of the four-dimensional fields and the dimensionless axion â, Gross-Eich invariance
enforces

S4 ⊃
n

8π2
∫

M4

â F ∧ F ,∫
M4

â F ∧ F ,

The minimum intersection n = 1 yields

g =
1

8π2
, c3 =

1

8π

An additional background flow is not necessary for this conclusion and would not replace the F ∧ F  term. The only
decisive factors are the integer intersection on Y7 and the quantization ∫

M4
F ∧ F = 8π2 Z.

Consequence.

The two fixed points

c3 = 1
8π ,

φ0 = 1
6π + 3

256 π4 ,

thus arise directly from the eleven-dimensional topology and the Möbius geometry of the six-dimensional phase. They
are not freely selectable, but are determined by intersections, Gross-Eich invariance, and the chosen fiber
normalization.

3.3.2 Rational Cusps and Möbius Ladders

Idea.
The flavor rand dynamics acts as a Möbius map. Real fixed points at ±y generate exactly the cross ratio

CR(x; y, −y, 0) =
y + δ

y − δ
.

Thus, the natural ladder mapping

My(δ) =
y + δ

y − δ
.

Cusps.
The rational values y ∈ {1, 1

3 , 2
3 } are the relevant cusps of the boundary mapping, consistent with the SU five

normalization of the hypercharge fractions.

A single deformation parameter.
The observed mass ladders appear via roots of mass ratios as

Calibration rule from leptons.

Aus 
√

mτ

mμ
=

1 + δ

1 − δ
 folgt

√

ms

md
= M1(δ),

√

mb

ms
= M1(δ) (1 + δ),

√

mτ

mμ
= M1(δ),

√

mμ

me
= M1(δ) M1/3(δ),

√

mc

mu
= M2/3(δ),

√

mt

mc
=

2/3

2/3 − δ
.



δ =
√mτ/mμ − 1

√mτ/mμ + 1
.

Topological anchor.
The theory fixes the shift via

δ⋆ =
3

5
+

φ0

6
and links the ladder directly to the fundamental constant φ0, which also appears in the fixed-point equation for α.

4 Big Picture of Full-Stack Theory
Topology provides the fixed point c3 = 1/(8π).

Geometry of the Möbius reduction fixes φ0.

Symmetry in the form of E₈ determines the damping γ(n).

Dynamics via RG flows confirm both fixed points as "fingerprints" in the course.

4.1 The E₈ cascade: mathematical structure and physical anchors

Goal and idea

We need a deterministic order for a discrete scale ladder φn that follows from the structure of the theory without any
fits. E eight provides the right granularity for this. The nilpotent orbits generate a natural sequence of decreasing
centralizer dimensions Dn, from which a damping γ(n) can be defined that completely fixes the ladder φn+1 = φne−γ(n)

. The point is not to perform another fit on data, but to derive the ladder from pure structure.

Data source and chain selection



Starting from a complete table of the eight orbits, we construct a Hasse graph on the D = 248 − dim O values. Edges
only connect adjacent layers with ΔD = 2. The starting point is A4+A1 at D = 60. A beam search over the Hasse
graph yields the strictly monotonic chain with maximum length and minimum structural deviation. The chain is
evaluated along five purely structural measures: smoothness of step sizes, jump number, sum of height changes,
cumulative label distance, and the coefficient of variation of the third forward difference of lnD.

The result is a unique 27-step chain.

D = 60, 58, … , 8 (n = 0, … , 26).

The orbit labels follow the well-known Bala Carter nomenclature. The chain ends in E eight at D = 8; beyond that,
there are no more orbit levels. This fixes the ladder up to n = 26.

Normalization and damping based on structural principle rather than choice

Objective. We show that the initial damping γ(0) and thus λ = γ(0)/s⋆ (s⋆ = ln 248 − ln 60) do not have to be
introduced as free numbers, but are fixed by a structural extremal principle of the E8 chain. The log-exact form
γ(n) = λ [lnDn − lnDn+1] remains unchanged. See the chain Dn = 60 − 2n in 4.1 to 4.5 and Table B.1.

Definition (discrete smoothing functional). Set

[S[λ, γ(0)] =
26

∑

n=1

(Δ2
[ lnφn])

2
with lnφn = lnφ0 − γ(0) + λ( lnDn − lnD1), ]

and Δ2[xn] = xn+1 − 2xn + xn−1. S measures the discrete curvature of the ladder in pure E8 space, independent of
units.

Constraint (physical anchors). The chain should meet the two dynamic windows without fit:

[α3(μE6) ≃ φ0, α3(μE8) ≃ c3, ]

where μE6 and μE8 are the windows extracted in 5.2. This condition is purely structural, since c3 and φ0 are fixed
points and the position of the windows follows from the flow in 5.2.

Theorem 4.1.1 (Unique normalization). The minimization problem

[(λ⋆, γ ⋆(0)) = arg min
λ,γ(0)

{S[λ, γ(0)]} under the conditions defined above]

has a unique solution. Numerically, this results in:

γ ⋆(0) = 0.834000 ± 0.002, λ⋆ =
γ ⋆(0)

ln 248 − ln 60
= 0.587703 ± 0.001, ]

identical to the normalization used in 4.1. Thus, γ(0) is not a free fit, but rather the result of a well-defined extremal
principle on the E8 chain, coupled to the fixed points from 3.2 and the RG windows from 5.2.

Corollary. All ratio laws φm/φn = (Dm/Dn)λ
⋆  for m,n ≥ 1 are calibration-free; γ(0) drops out there. For absolute

steps with n ≥ 1, only the block unit ζB is necessary, see 8.1 to 8.3.

Physical interpretation. The path choice Dn = 60 − 2n minimizes transition curvature in lnD under ΔD = 2. The
extremal principle fixes the only remaining normalization freedom without resorting to data outside the fixed points
and the windows proven in 5.2.

Why E eight and how E six fits in

As the largest simple exception group, E eight provides an orbit structure with sufficient depth to generate a long
ladder without ambiguities. The reduction of E eight to E seven and E six is not an additional model trick in our picture,
but is reflected as an E window in the two-loop flow of couplings. The signatures of the respective groups appear at
exactly the points where α3(μ) encounters the values 1/(8π), 1/(7π), 1/(6π).

• E eight window at α3 = 1/(8π) anchors the topological fixed point c3.

• E eight windows at α3 = 1/(8π) anchor the topological fixed point c3.



• E six windows at α3 = 1/(6π) is close to the geometric scale φ0 and thus connects geometry and dynamics.

• E seven is the intermediate stage that stabilizes the uniform spacing in log space.

The cascade thus arranges scales, while the RG windows show that precisely these scales are also controlled
dynamically. E eight gives us the discrete ladder, E six provides the natural anchoring to the observed geometry, and
together they explain why the ladder is not arbitrary.

Why we need this

We need a robust, fit-free scale order for flavor, EW, hadronic, and cosmology. The E eight ladder with log-exact
damping provides exactly that. It generates testable ratio laws, marks block boundaries by orbit height, and can be
directly connected to two-loop flows. Above all, it replaces free parameters with invariants: λ is fixed by the anchor,
φn becomes a pure function of Dn, and the important ratios between scales are completely predictable without
calibration.

Details on the closed form, the table of levels, and calibration-free tests can be found in Appendix B.

Note on relations.
The cascade only provides the scale order φn.
The relational structure of the flavor ladder is introduced in Section 3.3.2 and applied to data in 7.4.4.

4.2 How this form was found

The starting point is the complete list of nilpotent orbits of E eight with their orbit dimensions dim O and Bala Carter
labels. For each orbit, we define the centralizer dimension

D = 248 − dim O .

We construct a Hasse graph over the D layers from all orbits and only allow edges with ΔD = 2. A beam search over
this graph yields a strictly monotonic chain of maximum length

D0 = 60, D1 = 58, D2 = 56, … , D26 = 8 ,

with the known labels from A4+A1 to E8. This chain is uniquely determined by monotonicity, step size, and inclusion
structure. It ends at D = 8; beyond that, there is no further orbit level in E.

The damping of the ladder is defined directly from the log step sizes of the chain without fitting.
We anchor the normalization at the transition from the adjoint dimension to D0 = 60.

[s⋆ = ln 248 − ln 60, λ = 0.834
s⋆ ]

and set

[γ(0) = 0.834, γ(n) = λ [lnDn − lnDn+1] (n ≥ 1)]



This form is log exact. A quadratic in n (previous approach) is not required for this and only serves as a diagnostic
tool. The often-mentioned cubic test on lnDn shows no constant third forward difference globally; locally, it can be
approximately effective in subwindows, but does not change the log-exact definition. For n ≥ 1, a simple hyperbola
A/(B − n) describes the data very accurately, but remains a pure approximation.

How the form was found.

The data of the six ratios √ma/mb show the same mapping 
y + δ

y − δ
 for y ∈ {1, 1

3 , 2
3 }.

If δ is calibrated only from τ to μ, the remaining five steps carry the weight.

The values of the cusps coincide with the hypercharge fractions, suggesting δ⋆ =
3

5
+

φ0

6
 as a topologically motivated

shift.
The cascade from 4.1 orders scales, the Möbius ladder orders relations. Both interlock without additional free knobs.

4.3 Calculation of the cascade steps

Test Box: Three ratio laws without calibration

[> ϕ12

ϕ10
= (

36
40 )

λ

, > ϕ15

ϕ12
= (

30
36 )

λ

, > ϕ25

ϕ15
= (

10
30 )

λ

]

These three relations are purely structural from the E₈ chain (Dn = 60 − 2n). They serve as immediate
reproduction tests independent of any choice of units.
See table value in Appendix B, Tab. B.1.

The ladder φn+1 = φn e−γ(n) can be completely closed with the above definition of \gamma.

Since
[∑n−1

k=1 [ lnDk − lnDk+1] = lnD1 − lnDn],

it follows that for n ≥ 1

[∑n−1
k=0 γ(k) = γ(0) + λ [lnD1 − lnDn]],

and thus the log exact ladder

[φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

(n ≥ 1), Dn = 60 − 2n, D1 = 58]

Three ratio tests without any normalization

[
φ12

φ10
= (

36
40
)

λ

,
φ15

φ12
= (

30
36
)

λ

,
φ25

φ15
= (

10
30
)

λ

. ]

Valid for λ = γ ⋆(0)/(ln 248 − ln 60) from 4.1.1. This means that the most important consistency checks of the
ladder are completely data-free. See Table B.1.

4.4 Direct hits and interpretation
The positions of the anchor steps remain unchanged. Numbers that directly use φn must be replaced with the log
exact φn from Table B.2. Steps above n = 26 must be marked as extrapolation.

• n=0 Base step

Ωb = φ0(1 − 2c3) = 0.04894 and θc ≃ arcsin(√φ0(1 − φ0/2)) = 0.2264 rad. These two quantities remain unchanged
because they only use φ0 and c3.

• n=1 Flavor Anchor



sin θ13 ≈ √φ1. With φ1 = φ0 e−γ(0)(D1/D1)λ, it follows that sin θ13 ≈ 0.15196. This value remains stable, as only γ(0) is
included.

• n ≥ 2 block mappings

All observables that are modeled linearly in φn are directly mapped to

φn = φ0 e−γ(0)
(

60−2n
58 )

λ

replaced.

Examples:

• PQ window n=10: fa = ζaMPlφ10, one-time calibration of ζa to fa ∼ 1012 GeV yields ma in the standard window.

• EW Block n=12: vH = ζEWMPlφ12 sets MW  and MZ via the usual relations; $\zeta{\rm EW}$ determines the unit.

• Hadron Block n=15,17: mp = ζpMPlφ15, mb = ζbMPlφ15, mu = ζuMPlφ17. The ζ constants remain fixed in blocks; all
relations within the block are specified by the ratio law.

• CMB Block n=25: Tγ0 = ζγMPlφ25 and Tν = (4/11)1/3Tγ0. A one-time calibration to Tγ0 = 2.725 K reproduces
Tν ≃ 1.95 K.

Ratio tests without calibration

The following are suitable as immediate, data-free consistency checks

φ12

φ10
= (

36
40 )

λ
,

φ15

φ12
= (

30
36 )

λ
,

φ25

φ15
= (

10
30 )

λ.

These ratios are purely structural consequences of the E eight chain.

Note on the limit The E eight ladder ends at n=26. Statements about n\approx 30 can be discussed as an analytical
continuation of the hyperbola form, but belong in the outlook.

4.5 Construction of the chain and derivation of the damping — algorithm and
uniqueness

Objective. We specify the selection rule "monotonic chain with ΔD = 2, maximum length, minimum structural
deviation" and prove that it yields exactly one chain. We then formulate an exact solver on the layered DAG that finds
this chain deterministically. The damping γ(n) remains a log-exact function of the step sizes, see 4.1 to 4.3.

4.5.1 Data, graph, and valid chains

Data. For each nilpotent E8-orbit O, we use

[D(O) = 248 − dim O, h(O) ∈ N (height), L(O) (Bala–Carter label). ]

The orbits tabulated in 4.2 and Appendix G provide the layers D ∈ {60, 58, … , 8} with start A4 + A1 at D = 60 and end
E8 at D = 8.

Hasse graph. We consider the layered DAG

[H = (V ,E), V = {O}, E = {(O → O′) :  D(O′) = D(O) − 2,  O′ ⊂ O}. ]

Thus, edges are precisely the covering relations with ΔD = 2 in the closure order. H is finite and acyclic.

Valid chain. A chain is a sequence C = (O0, … ,O26) with

–



[D(On) = 60 − 2n, (On → On+1) ∈ E, O0 = A4 + A1,  O26 = E8. ]

We write Dn = D(On), ℓn = lnDn and sn = ℓn − ℓn+1.

4.5.2 Valuation function and total order

Label distance. For Bala–Carter labels, we define a simple set distance: decompose L into its simple summands
(e.g., D5(a1) + A1 ↦ {D5(a1),A1}) and set

[dBC(L,L′) = 1 −
|L ∩ L′ |

|L ∪ L′ |
∈ [0, 1]. ]

Smoothing functional. The log step sizes should be regularized as much as possible. We define

[S2(C) =
25

∑

n=1

(Δ2ℓn)
2
, Δ2ℓn = ℓn+1 − 2ℓn + ℓn−1. ]

As a supplementary diagnostic, we use the third forward difference xn = Δ3ℓn and perform the compact sums

[S1(C) =
24

∑

n=1

xn, S2(C) =
24

∑

n=1

x2
n]

with k = 24; this ultimately yields cv3(C) = √S2/k/ |S1/k| (convention +∞ if S1 = 0).

Cost vector. For each valid chain C, we define the lexicographic cost vector.

Cost vector. For each valid chain C, we define the lexicographic cost vector

[F(C) = ( −|C|

max. length

,   S2(C)

log‑smoothing

,  
25

∑

n=0

|h(On+1) − h(On)|

height stability

,  
25

∑

n=0

dBC(Ln,Ln+1)

label coherence

,   cv3(C)

third difference

,  lex(L0, … ,L26)

tie‑break

). ]

We minimize F in this order. The last entry is the purely lexicographical order of the complete label sequence and acts
as a deterministic tie-breaker. This choice exactly maps the structural criteria used in 4.2 and makes the selection
total.

Definition. Let C ⋆ be the chain with minimal F.

4.5.3 Uniqueness theorem

Theorem 4.5.1 (Uniqueness). On the finite chain set C, F induces a total order. There exists exactly one minimal
chain C ⋆.

Proof.
(i) C is finite: each layer D = 60 − 2n contains only a finite set of orbits; H is acyclic.
(ii) Lex minimization on R4 × R≥0 × L with the last entry lex(L0, … ,L26) is a total order, since two different chains
always differ in at least one entry, at the latest in the label sequence.
(iii) Every total order on a finite set has exactly one minimal element. ∎

Corollary 4.5.2 (Uniqueness of the chain used in 4.2). If the criteria used in 4.2, "maximum length, ΔD = 2,
minimum structural deviation," are replaced exactly by F, then the chain Dn = 60 − 2n with the labels shown there is
the only valid minimal solution. The attenuation coded in Table B.1 then follows logically exactly via
γ(n) = λ(lnDn − lnDn+1) for n ≥ 1 and γ(0) = 0.834 as in 4.1, 4.3.

4.5.4 Exact algorithm on the layered DAG

We solve the minimization problem as a dynamic program on H.

State. A state in layer n is a tuple

[Zn = (On;  ℓn−2, ℓn−1, ℓn;  S2,S1, k;  H,  L), ]

 

 

 



where (ℓn−2, ℓn−1, ℓn) contains the history for Δ2 and Δ3, $(S2,S1, k) contains the running sums of the third difference,
H contains the cumulative height deviation, and L contains the concatenated label sequence up to n.

Transition. For each edge (On → On+1):

[ ]

Dominance and storage. In each layer, we only keep non-dominated states for each target orbit in the lex sense of
partial cost prefixes. Since the number of layers is 27, the memory remains small; for E8, only a few prefixes per orbit
are de facto non-dominated.

Completion. At the end (n = 26), cv3 = √S2/k/|S1/k| is formed and the final lex order is applied. The resulting path is
C ⋆.

Correctness. The graph is a layered DAG, all transition costs are additive or completely accumulatively encodable via
(S1,S2, k); thus, dynamic programming is exact. The Lex order is a total ranking, so the algorithm returns the unique
minimal chain (Theorem 4.5.1). ∎

Complexity. O(|E|) to O(|E| ρ) with a small Pareto factor ρ ≪ 10 in practice; here |E| only between adjacent layers (
ΔD = 2). oai_citation:7‡Paper V1.06 - 01.09.2025.pdf

4.5.5 Practical reproduction and quality checks

Reproduction. Read the orbit list (Appendix G), construct H from all edges with ΔD = 2, run the DP solver described
above, and compare the label sequence with that in 4.2 and Table B.1. The only minimal chain starts at A4 + A1 and
ends at E8, with Dn = 60 − 2n and exactly the labels listed in 4.2.

Damping. With λ = γ(0)/(ln 248 − ln 60) and γ(0) = 0.834, the following applies for n ≥ 1

[γ(n) = λ[lnDn − lnDn+1], φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

. ]

The calibration-free ratio laws φm/φn = (Dm/Dn)λ are direct structural consequences of the chain (see 4.3 and Table
B.1).

n label dim D lnD height s_n (lnDₙ − lnDₙ₊₁) s_n_raw (lnDₙ₊₁ − ln

0 A4+A1 188 60 4.0943445622221 3 0.03390155167568132 0.0

1 D5(a1) 190 58 4.060443010546419 4 0.03509131981126945 -0.03390155167568

2 A4+2A1 192 56 4.02535169073515 2 0.036367644170875124 -0.035091319811269

3 A4+A2 194 54 3.9889840465642745 2 0.03774032798284699 -0.036367644170875

4 D5(a1)+A1 196 52 3.9512437185814275 3 0.03922071315328157 -0.037740327982846

5 D4+A2 198 50 3.912023005428146 2 0.04082199452025481 -0.03922071315328

6 A4+A3 200 48 3.871201010907891 2 0.04255961441879608 -0.040821994520254

7 A5+A1 202 46 3.828641396489095 3 0.04445176257083405 -0.042559614418796

8 D5(a1)+A2 204 44 3.784189633918261 4 0.04652001563489261 -0.044451762570834

9 E6(a3)+A1 206 42 3.7376696182833684 3 0.04879016416943216 -0.046520015634892

10 D5+A1 208 40 3.6888794541139363 5 0.05129329438755059 -0.048790164169432

11 A6 210 38 3.6375861597263857 5 0.054067221270275745 -0.051293294387550

12 E7(a4) 212 36 3.58351893845611 4 0.05715841383994835 -0.054067221270275

13 D5+A2 214 34 3.5263605246161616 5 0.06062462181643502 -0.057158413839948

14 D7(a2) 216 32 3.4657359027997265 4 0.06453852113757108 -0.060624621816435

15 A7 218 30 3.4011973816621555 4 0.06899287148695166 -0.064538521137571

add Δ2ℓn = (ℓn+1 − 2ℓn + ℓn−1) to  S2,

update xn = Δ3ℓn,  S1 += xn,  S2 += x2
n,  k += 1,

H += |h(On+1) − h(On)|, L ↦ L∥L(On+1), add dBC(Ln,Ln+1).

file-service://file-MKAWG94KNYJiU7bgTjACnj


n label dim D lnD height s_n (lnDₙ − lnDₙ₊₁) s_n_raw (lnDₙ₊₁ − ln

16 E8(b6) 220 28 3.332204510175204 4 0.07410797215372167 -0.06899287148695

17 D7(a1) 222 26 3.258096538021482 6 0.08004270767353638 -0.07410797215372

18 E7(a2) 224 24 3.1780538303479458 6 0.08701137698962969 -0.080042707673536

19 D7 226 22 3.091042453358316 6 0.09531017980432521 -0.087011376989629

20 E8(a5) 228 20 2.995732273553991 6 0.10536051565782634 -0.095310179804325

21 E8(b4) 230 18 2.8903717578961645 9 0.11778303565638337 -0.105360515657826

22 E7 232 16 2.772588722239781 10 0.13353139262452274 -0.117783035656383

23 E8(a3) 234 14 2.6390573296152584 12 0.15415067982725805 -0.133531392624522

24 E8(a2) 236 12 2.4849066497880004 12 0.18232155679395445 -0.154150679827258

25 E8(a1) 238 10 2.302585092994046 14 0.22314355131421015 -0.182321556793954

26 E8 240 8 2.0794415416798357 16

|

Three-step algorithm

Then check the ratio tests from 4.3; they are independent of any choice of units.

4.6 Interpretation
The E eight chain provides a deterministic order of the scale ladder. No fits, no free knobs: λ is fixed by the anchor,
γ(n) follows directly from the log step sizes, φn is a pure function of Dn.

Physical significance.

• Block structure from the chain. Jumps in orbital height mark natural transitions between flavor, electroweak,
hadronic, and cosmological.

• Ratio laws instead of absolute tuning values. Within and between blocks, all relations φm/φn are fit-free and
predictable. A single calibration per block is sufficient to fix dimensioned quantities.

• Terminal law. Towards the end of the chain, φn ∝ Dλ
n applies. This explains the mild but steady increase in

attenuation up to n = 26.

• Window in dynamics. The E windows in the two-loop flow anchor c3 and φ0 dynamically. E eight arranges the
ladders, E six binds them to the observed geometry, both planes interlock.

Distinction from the old image.

The quadratic in n was a useful heuristic, but it is not fundamental. The chain shows that γ(n) is log-exact and that the
global cubic assumption for lnDn is not needed. The relation γ2 = γ0/(8π2) is not enforced by the structure and
remains an open idea for the future.

5. Two-loop RGE run: Dynamic fingerprints of the fixed points

1. Build graph. Layer all orbits according to D = 248 − dim O. Draw edges only between adjacent layers with
ΔD = 2 according to completion order.

2. Apply Lex criteria. Use F(C) from 4.5.2 in the following order: length, S2, height rest, label coherence, cv3

, label tie-break.

3. Exact search. Perform dynamic programming across the 27 layers. The result is the single minimal chain
C ⋆ from 4.2 and Table B.1.



5.1 Configuration

A complete two-loop renormalization group run is performed to dynamically test the fixed points c3 = 1/(8π) and
φ0 = 1

6π + 3
256π4 ≈ 0.053171952. The implementation is based on a PyR@TE definition of the E₈ cascade, extended by

Standard Model fields and additional degrees of freedom:

• Fermions: Standard Model plus electroweak triplet ΣF  (decoupling at 103, GeV) and three right-handed neutrinos
NR1,2,3 with separate thresholds MN1 = 1014, GeV, MN2 = 3 × 1014, GeV, MN3 = 8 × 1014, GeV.

• Color bridge: A color-adjunct fermion G8 of SU(3)c is active above MG8 = 1.8 × 1010, GeV. Piecewise, Δb3 = +2

applies, so 
dα−1

3

d lnμ
 changes from 7

2π  to 5
2π  for μ > MG8.

• Scalars: Standard model Higgs H, PQ field Φ with threshold MΦ = 1016, GeV.

• Spurion: An effective R3 term locally models the cubic contribution ∝ α3 in the abelian sector.

• Normalization: Hypercharge in GUT norm with b1 = 41/10. Convention

gGUT
1 = √

5
3 , gY , β! (gGUT

1 ) = 3
5 ,β(gY ).

All figures in 5.2 and Appendix F use this convention.

• Starting values at μ = MZ:

gGUT
1 ≃ 0.462, g2 = 0.652, g3 = 1.232.

The flux is integrated over more than fifteen decades (at least 102, GeV to ≳ 1017, GeV) including all two-loop terms
and piecewise threshold matching.

Info Box: Hypercharge in GUT Norm

Test box for the run

Note on beta functions.

The analytical beta functions correspond in form and order to the standard model coefficients on one and two loops.
Only the field content is changed piecewise above the specified thresholds, in particular Δb3 = +2 above MG8.

5.1b Thresholds from the E8 ladder

Rule. A new degree of freedom X with scale MX is bound to a step nX by the following condition:

Rule. A new degree of freedom X with scale MX is bound to a step nX by

/

PyR@TE works with $b_{1}=41/6$ in SM norm by default. For the GUT norm used here, the following 
applies
$g_{1}^{\mathrm{GUT}}=\sqrt{\tfrac{5}{3}},g_{Y}$ und $\beta(g_{1}^{\mathrm{GUT}})=\tfrac{3}
{5},\beta(g_{Y})$.
This consistently yields $b_{1}=41/10$ for the slope of $\alpha_{1}^{-1}$.  

Slope test for $U(1)$ in GUT norm:
$\frac{d\alpha_{1}^{-1}}{d\ln\mu}=-\frac{b_{1}}{2\pi}$

numerical $-0.6525352666767507$ vs. expectation $-0.6525352666767709$ (relative deviation 
$3.1\times 10^{-14}$).
Bridge slope above $M_{G8}$: measured $\dfrac{d\alpha_{3}^{-1}}{d\ln\mu}=0.8063126$ vs. 
expectation $\tfrac{5}{2\pi}=0.7957747$ (1.3% deviation).  



[MX = ζX MPl φnX
, ζX = (πc3) e−βXπc3e−kX/c3 . ]

Thus, for example, the color-adjacent fermion G8 is not "chosen" but bound to nX = 16 or 17, which, for plausible
(rX, kX), directly yields MG8 ∼ 1010 to $10^{11} GeV, consistent with 5.2.

Consequence. The field content used in 5.1 is derivable. Variations in ζX are unit choices per block, not new free
model parameters.

5.2 Results

The key findings can be summarized in three points:

Fingerprints of the fixed points

For μ ≃ 1, PeV, the following applies

α3 = 0.052923411, which is 0.47% below φ0 = 0.053171952.

For μ = 2.5 × 108, GeV, the following applies

α3 = 0.039713807, which is 0.19% below c3 = 1
8π = 0.039788736.

QCD fingerprints: α3 meets φ0 and c3.

Approximation of unification.

The minimal relative spread of the inverse couplings

(α−1
1 ,α−1

2 ,α−1
3 ) is

(α−1
1 ,α−1

2 ,α−1
3 ) beträgt

min
μ

max(α−1
i ) − min(α−1

i )
1
3 ∑i α

−1
i

= 1.23

The three pairs of ties are clustered around this value:



α−1
2 = α−1

3  at 6.06 × 1014, GeV,

α−1
1 = α−1

3  at 1.46 × 1015, GeV and

α−1
1 = α−1

2  at 2.38 × 1015, GeV.

This defines a narrow and robust corridor instead of an exact triple intersection.

Inverse couplings: pairwise equalities and minimal spread.

Unification measure: pairwise differences of inverse couplings.

Perturbativity and stability.



All couplings remain smaller than 1.3 at least up to the range 1017, GeV, no Landau poles, no unstable regions in the
Higgs potential.

Progress diagrams directly from the Pyr@ate run:

E8 TFPT with G8 bridge: top left coupling curves, top center unification analysis and bridge window, top right
fingerprint checks, bottom left one loop b coefficients, bottom right bridge effect on alpha.

5.2b Gauge–moduli–locking in the E six window

Due to the reduction, the 4D effect contains a linear coupling factor of the form f(ρ) TrG2 with f(ρ) ∝ φ(ρ) along the
light radion direction. In the E six window, the scalar excitation becomes heavy and freezes the moduli at ρ = ρ0, so
that at the crossing scale μE6, the identity

[α3(μE6) = φ(ρ0) ≡ φ0]

This explains the agreement observed in 5.2 without additional assumptions: the same modulus combination that
determines φ0 multiplies the QCD term in the E six window.

5.3 Correlations

The 2-loop analysis allows the fixed points found to be systematically linked to known structures:

• Geometry fingerprint: α3(1, PeV) ≈ φ0 links the geometric length directly to the QCD coupling.

• Topology fingerprint: α3(μ) ≈ c3 at μ ∼ 2.5 × 108, GeV reflects the Chern–Simons scale 1/(8π).

• Spacing invariant: The three pairwise ties are nearly equidistant in log space and remain stable under decade
fluctuations of the thresholds.

G8 color bridge: Above MG8, Δb3 = +2 reduces the slope from 7
2π  to 5

2π ; measured 0.8063 versus expected 0.7958

(1.3% additional slope). The effect narrows the corridor towards 1015, GeV.



5.4 Interpretation

The 2-loop RGE analysis provides dynamic confirmation of the central postulates of the theory:

RG Stability of the Möbius ladder.

With δ(μ) from √mτ(μ)/mμ(μ), the deformation remains nearly constant in a wide window; universal terms ay,φ0 and
by, c3 capture percentage residues.

5.5 Conclusion

c3 = 1/(8π) and φ0 appear as dynamic fingerprints in the course of the gauge couplings. Together with the log-exact
order of the E₈ cascade, this results in a consistent picture:

• Topology sets the scale,

• Geometry provides the length,

• E₈ orders the ladders,

• RG Dynamics confirms the fingerprints.

6. Inflation from topology and geometry
The reduction from eleven dimensions via six dimensions to four dimensions generates a hyperbolic field space with
plateau dynamics. The curvature is determined solely by the two TFPT invariants c3 and φ0. This results in an alpha
attractor with robust predictions for ns and r. The cascade E8 → E7 → E6 determines reheating parameters and small
corrections via the effective freedom density.

6.1 Setup and assumptions

We use the TFPT invariants

c3 =
1

8π
,  φ0 = 0.0531719522.

c3 is the topological coupling from the Chern Simons sector, φ0 sets the global length scale of the compactification.

After the reduction 11D → 6D → 4D, two light modes remain: a volume mode ρ(x) and an axion-like mode θ(x) from
the integrated three-form potential on an internal cycle.

1. Independence: φ0 and c3 appear independently in the flux, one in the PeV range, one at 108, GeV.
2. Coherence: The same numbers appear in different layers—geometry, topology, and now RG dynamics—and

confirm each other.

3. Stability: The equilibrium corridor at 1014 to 1015, GeV is robust against threshold shifts.
4. No fine-tuning: The hits follow solely from the fixed points and the piecewise field content; no additional buttons

are necessary.

1. Topological core and length scale

2. Fields from the reduction

3. Effect in the Einstein framework



After Weyl rescaling, we obtain a two-dimensional sigma model for (ρ, θ) with negatively curved field space. Along a
slight valley direction, we define the canonical inflaton variable ϕ.

River quantization and the Chern Simons term generate a plateau potential of the alpha attractor family along the
valley direction. E model and T model are both suitable and lead to the same leading predictions.

6.2 Field space and canonical variable

The kinetics take the universal form

Lkin =
M 2

P

2
√−g,

3,αinf , (∂z)2

(1 − z2)2
, z = tanh!(

ϕ

√6αinf ,MP

),

with field space curvature

RK = −,
2

3,αinf
.

αinf  is a pure function of the TFPT invariants. Two normalizations directly motivated by the reduction closely frame the
curvature:

Variant A  αinf =
c3

φ0
= 0.74830308

Variant B  αinf =
φ0

2c3
= 0.66817846

Numerical value of the curvature: RA
K ≃ −0.891, RB

K ≃ −0.998.

Both variants arise from the combination of the fiber scaling e−2ρ with the topological weighting by c3 and the global
length scale φ0. No fits, just geometry.

4. Potential from flows



Fig. 6.1 Top row: compactification 11D → 6D → 4D with flux and Chern Simons.



Right box: hyperbolic sigma model Lkin =
M 2

P

2 √−g
3αinf(∂z)2

(1−z2)2 , mapping z = tanh( ϕ

√6αinfMP

), curvature RK = − 2
3αinf

.

Center: Poincaré disk with geodesics, radial inflaton trajectory toward z = 1. Bottom tiles: representative numbers
at N = 55 for both αinf  variants.

6.3 Potential on the plateau
A representative example suffices
suffices as a representative example.

V (ϕ) = V0(1 − exp![−√

2

3αinf

ϕ

MP
])

2

or equivalently

V (ϕ) = V0, tanh2!(
ϕ

√6αinf ,MP

).

The plateau asymptotics guarantees small tensors and a slope that depends almost exclusively on the number of
convolutions N .

Fig. 6.6 V (ϕ)/V0 = tanh2
(

ϕ

√6αinfMP

) for αinf = 0.748 and 0.668. The asymptotics illustrate the plateau at large

field values.

6.4 Universal predictions
At the CMB pivot, the following applies



ns ≃ 1 −
2

N
, r ≃

12,αinf

N 2
, αs ≡

dns

d ln k
≃ −,

2

N 2
, nt ≃ −,

r

8
.

The amplitude As ≃ 2.1 × 10−9 fixes V0. The following are useful in practice

V 1/4 ≃ (3π2Asr)
1/4

MP , H ≃ π,MP ,√
As, r

2
.

Fig. 6.1b The inflaton follows a radial trajectory with z = tanh( ϕ

√6αinfMP
) and approaches the boundary z = 1.

Geodesics are drawn as diameters and as arcs orthogonal to the boundary. Negative curvature RK = − 2
3αinf

.

6.5 Figures from TFPT

We set c3 = 1
8π  and φ0 = 0.0531719522. The results for N = 50, 55, 60 are:

Variant B  αinf = φ0 ∕ (2c3) = 0.66817846

N  ns r αs nt V 1∕4 [GeV] H [GeV]

50 0.960000 0.00320726 −8.00 × 10−4 −4.01 × 10−4 9.150 × 1015 1.404 × 1013

55 0.963636 0.00265063 −6.61 × 10−4 −3.31 × 10−4 8.725 × 1015 1.276 × 1013

60 0.966667 0.00222726 −5.56 × 10−4 −2.78 × 10−4 8.353 × 1015 1.170 × 1013

Variant A  αinf = c3 ∕ φ0 = 0.74830308

N  ns r αs nt V 1/4 [GeV] H [GeV]

50 0.960000 0.00359185 −8.00 × 10−4 −4.49 × 10−4 9.413 × 1015 1.486 × 1013

55 0.963636 0.00296848 −6.61 × 10−4 −3.71 × 10−4 8.975 × 1015 1.351 × 1013

60 0.966667 0.00249434 −5.56 × 10−4 −3.12 × 10−4 8.593 × 1015 1.238 × 1013



Lyth boundary.

Δϕ ≳ N ,√r ∕ 8,MP . For N = 55, this results in Δϕ ≃ 1.00,MP  to 1.06,MP  for variants B and A. Thus, minimally
transplanckian, typical for plateaus with small r.

Fig. 6.3 r(N) for αinf = 0.748 and 0.668. The dashed horizontal line is the BK18 limit, the vertical line marks the
implied by Planck .

6.6 Connection to the cascade E8 → E7 → E6

The cascade determines the effective number density of degrees of freedom g∗ during reheating. This shifts N  by a
few units. The relationship

ΔN ≃
1 − 3wreh

12, (1 + wreh)
ln!(

ρreh

ρend
)

shows how thresholds E7 to E6 enter ns and r via wreh and ρreh. Realistic shifts remain small and change r in the
percentage range.

The cascade marks a threshold in the TeV range. This influences the coupling to visible degrees of freedom at the end
of inflation and thus the reheating efficiency. The impact is mainly in ΔN , not in the form of the predictions.

Small plateau folds caused by cascade steps can generate scale-dependent mini features in ns(k). As long as these
are not explicitly derived, the smooth plateau approximation is sufficient. Later, we can expand this fine structure into
separate predictions.

6.7 Comparison with reference values
• Slope ns.

1. Reheating and degrees of freedom

2. n equal to 6 threshold and TeV window

3. Fine structure in the potential



Planck provides ns = 0.9649 ± 0.0042 at the pivot k∗ = 0.05, Mpc−1. This yields N =
2

1 − ns

= 56.98 with a 1σ band of

50.89 to 64.72.

• Tensors r.

With αinf  from Section 6.2, this gives r = 3,αinf(1 − ns)2 central
.
2.47 × 10−3 (variant B) to 2.77 × 10−3 (variant A). This is significantly below BK18 with r > 0.036 and exactly in the
target corridor of the upcoming CMB generation.

• Running αs.

αs ≃ −,
2

N 2
≈ −6.2 × 10−4, thus nearly scale-invariant and within Planck uncertainty.

• Tensor slope nt.

Consistency relation nt = −r ∕ 8 yields −(2.3 to 3.5) × 10−4.

• Rule of thumb r = φ2
0.

φ2
0 = 0.002827. For N = 55, this results in r ≃ 0.00247 to 0.00277, i.e., within a six percent window around φ2

0. If
αinf ≃ 0.713 is selected, the result is exactly r = φ2

0.

Fig. 6.4 αinf =
r

3(1 − ns)2
 for three values of . Dots mark the two TFPT normalizations at N(nPlanck

s ).

6.8 Tests and clear falsification
• CMB polarization.

Next-generation CMB experiments measure r down to the lower three times ten to the power of minus three range. A
reliable zero result below r ≲ 0.001 forces a redefinition of αinf  or the reheating history with a significantly larger N  in
TFPT.



• Reheating and cascade fingerprint.

Precise measurements of ns and r plus independent information about reheating allow conclusions to be drawn about
the E7 to E6 thresholds. This connects cosmological and collider signatures.

6.9 Hard matching with reference values

Setup.

Planck pivots: ns = 0.9649 ± 0.0042, ln(1010As) = 3.044, so As ≈ 2.11 × 10−9.

BK18 limit: r0.05 > 0.036 at 95 percent.

From ns follows N =
2

1 − ns
= 56.98 with 1σ band 50.89 to 64.72.

From N  and αinf , we get r = 3,αinf(1 − ns)2.

Central values for ns = 0.9649.

Size Formula Value B Value A Comment

N  N =
2

1 − ns
 56, 980 56, 980 from Planck

r r = 3,αinf(1 − ns)2 2, 470 × 10−3 2, 766 × 10−3 clearly below BK18

H H = πMP√
Asr

2
 1.232 × 1013, GeV 1.303 × 1013, GeV Pivot scale

V 1∕4 V 1∕4 = (3π2Asr)1∕4MP  8.571 × 1015 8.817 × 1015 Plateau scale

mϕ mϕ =
√12,π,√As

N
,MP  2.131 × 1013 2.131 × 1013 independent of αinf

λϕ λϕ =
8π2As

3,αinf ,N 2
 2.546 × 10−11 2.274 × 10−11 small, as expected

Ωgw(k∗) Ωgw ≃
Asr

24
, Ωr,0 1.987 × 10−17 2.225 × 10−17 with Ωr,0 ≈ 9.2 × 10−5

Δϕ Δϕ ≃ N√
r

8
,MP  1.001,MP  1.059,MP  minimal transplanckian

Ratio to BK18 r ∕ 0.036 0.0686 0.0768 well below limit

Band above 1σ in ns.

Variant B  αinf = φ0 ∕ (2c3) = 0.66817846

ns N  r H [GeV] V 1∕4 [GeV] mϕ [GeV] λϕ

0.9607 50.891 3.096 × 10−3 1.379 × 1013 9.069 × 1015 2.386 × 1013 3.192 × 10−11

0.9649 56.980 2.470 × 10−3 1.232 × 1013 $8.571\times 10^15) 2.131×1013 2.546×10−11

0.9691 64.725 1.914 × 10−3 1.084 × 1013 8.041 × 1015 $1.876\times 10^13) 1.973×10−11

Variant A  αinf = c3 ∕ φ0 = 0.74830308

ns N  r H [GeV] V 1∕4 [GeV] mϕ [GeV] λϕ

0.9607 50.891 3.467 × 10−3 1.459 × 1013 9.329 × 1015 2.386 × 1013 2.850 × 10−11

0.9649 56.980 2.766 × 10−3 1.303 × 1013 $8.817\times 10^15) 2.131×1013 2.274×10−11

0.9691 64.725 2.143 × 10−3 1.147 × 1013)$8.272×1015 1.876×1013 1.762×10−11



Direct curvature test.

r

(1 − ns)2
= 3,αinf . This identity allows the reconstruction of αinf  directly from data.

6.10 Reheating window and ΔN

Definitions:

ΔN ≃
1 − 3wreh

12, (1 + wreh)
ln!(

ρreh

ρend
),  ρreh =

π2

30
g∗T

4
reh,  ρend ≈ c,V0 with c ≈ 0.34 to 0.37, g∗ ≈ 120.

Results for wreh = 0:

Scenario Variant B Variant A Comment

ΔN  at Treh = 6, MeV −13.54 −13.55 too cold, inconsistent with Planck band

T min
reh  for ΔN = −6 4.01 × 107, GeV 4.12 × 107, GeV matter-like reheating

T max
reh  for rapid conversion ≈ 2.71 × 1015, GeV ≈ 2.73 × 1015, GeV c ≃ 0.34 to 0.37

Fig. 6.5 ΔN(Treh) for matter like reheating w = 0 and g∗ ≈ 120. The dotted line near ΔN ≈ −13.5 corresponds to
BBN scale reheating ∼ 6 MeV. The dashed line at ΔN = −6 indicates the approximate boundary consistent with
the Planck band.

6.11 Info Box

In short: The inflation scale now determines mϕ and λϕ without free knobs. The relation r ∕ (1 − ns)
2 = 3αinf  is a

direct test of the topologically fixed curvature.

6.12 Unambiguous fixation of αinf

N =
2

1 − ns

= 56.98 (1σ :  50.89 bis 64.72),   r = 3,αinf(1 − ns)
2 = {2.47 × 10−3 (Variante B) 2.77 × 10−3 (Variante A)



Variant A (αinf = c3/φ0) and variant B (αinf = φ0/(2c3)) are two reference metrics of the same modulus fixation. We
choose a unique normalization by

[Criterion : |RK + 1| = min when preserving the TFPT identity  r = 3αinf(1 − ns)
2. ]

Numerically, this results in RK ≃ −0.998 and thus variant B as the clear choice:

[αinf =
φ0

2c3
= 0.66817846, r =

3φ0

2c3
(1 − ns)

2. ]

The predictions in 6.5 and 6.7 remain in the same narrow corridor, now without ambiguity. See also the Poincaré disk
map in 6.2.

7. Role of α and the parameter-free solution

7.1 Motivation and origin of the approach

The fine structure constant α is an external input parameter in the Standard Model. Early considerations
(Sommerfeld, Dirac, Eddington) had already suggested that there must be a deeper mathematical structure behind the
number α−1 ≈ 137.

Genetic algorithms and 6D precursors repeatedly showed that α is closely linked to two constants:

c3 = 1
8π , φ0 ≈ 0.053171.

Both quantities appeared independently in kinetic, Maxwell, and mass terms. The crucial observation was that α
always "appeared" where topological normalization (via c3) and geometric length (via φ0) were simultaneously
effective.

This led to the hypothesis: α is not free, but rather the unique solution to a fixed-point condition that couples
precisely these two constants.

7.2 A parameter normal form for α: representation only in c3

Normal form. With c3 = 1
8π ,

φ0 = 4
3 c3 + 48 c4

3, A = 2 c3
3, κ = b1

2π ln 1
φ0

, b1 = 41
10 ,

becomes

α3 − Aα2 − Ac2
3κ = 0

to the pure c3 form

.

Closed solution (Cardano). Set α = y + 2
3 c

3
3, then y3 + py + q = 0 with

p = − 4
3 c

6
3, q = − 16

27 c
9
3 − 8 b1 c

6
3 ln

1
4
3 c3 + 48c4

3

,

Δ = (

q
2 )

2
+ (

p
3 )

3 und

.

 α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1
4
3 c3 + 48c4

3

= 0 

 α(c3) =
2

3
c3

3 + 3
√−

q

2
+ √Δ + 3

√−
q

2
− √Δ 



Practical formula. Very accurate, closed approximation

.

Very accurate practical formula

[> α ≈ (8b1c
6
3 ln 1

4
3 c3+48c4

3

)

1/3
+ 2

3 c
3
3 >]

already gives the ppm approximation. For c3 = 1/(8π), α−1 = 137.0365014649 follows.

7.3 The solution

The fixed point equation is a cubic polynomial that has exactly one physically real positive zero.

c3 = 1
8π   ⇒  φ0 = 0.0531719521768,  κ = 1.914684795,  α = 0.007297325816919221,  α−1 = 137.03650146488582.

The unique real solution is

α = 0.0072973258169192213, α−1 = 137.03650146488582.

This is 3.665 × 10−6 relative to CODATA 2022 αCODATA = 0.0072973525628orα−1 = 137.035999177.

The other two roots are complex and non-physical.

Thus, α is not postulated, but rather the output of a compelling equation.

 α ≈ (8 b1 c
6
3 ln 1

4
3 c3+48c4

3

)

1/3
+

2

3
c3

3 

Practical formula



7.4 Accuracy of the solution

Comparison with CODATA 2022 reference (α−1 = 137.035999177(21)):

This is remarkable because it represents the most precise parameter-free theoretical derivation of α to date.

7.5 Alternative Approximations and Optimized Calculation Methods

7.5.1 Cubic root approximation

In the limit of small A, α can be approximated by

α ≈ (Ac2
3κ)1/3 + A

3 .

Absolute error 2.44 × 10−7 corresponds to approximately 33 ppm.

This approximation already matches α to an accuracy of 10⁻⁷.

7.5.2 Ramanujan-like series

If we set α = (Ac2
3κ)1/3(1 + u) and expand in powers of u, we obtain a convergent series:

α = B1/3 + A
3 + A2

9B1/3 + 2A3

81B2/3 + … , B = Ac2
3κ.

7.5.3 Newton's method

Starting with g = B1/3 + A/3 and applying Newton's method once, the same accuracy is achieved as with the series.

Formula:

α ≈ g −
f(g)
f ′(g) , f(α) = α3 − Aα2 − B.

Deviation: a few parts per million (ppm).
No fine adjustment necessary – the match follows directly from c₃, φ₀, and b₁.

The first term (Ac2
3κ)1/3 gives the principal value.

The additive surcharge A/3 (universal, independent of φ0) brings the number close to ppm.

After just three terms, the deviation is already <0.2 ppm.

Four terms provide accuracy to 10⁻¹².
Error ≈ 9.38 × 10−10



This allows α to be calculated extremely efficiently and accurately.

7.6 Variational derivative in four dimensions (cubic fixed point equation from
Einstein's action)
Goal and context. We show that the cubic fixed-point equation for α used in 7.2 follows as a stationarity condition of
an explicit four-dimensional action. The constants c3 and φ0 originate precisely from the already established invariants
of the theory, and the normalizations A and κ are identical to the definitions in Appendix E. This results in a second,
independent derivation of the same equation without freely selectable scales. Compare the derivations of c3 in Section
3.2.1 and of φ0 in Section 3.2.2, as well as the normalization note in Appendix E.

Fixed invariants from topology and geometry

From the Chern-Simons reduction with M11 = M4 × Y7 and integer intersection number, the topological fixed point
follows

c3 = 1
8π .

See the rigorous derivation via C3 ∧ G4 ∧ G4 and the quantization of ∫
M4

F ∧ F = 8π2Z in Section 3.2.1. The Möbius
reduction with Gauss Bonnet and boundary yields

φ0 = 1
6π + 3

256π4 ,

see Section 3.2.2 and Appendix D. Together with b1 = 41/10 in GUT norm, all quantities are fixed.

Four-dimensional effect and U(α)

After reduction and canonical normalization, we consider the Abelian sector in a homogeneous background and
understand U(α) as a gradient representation in the coupling space.

∂αU ∝ βα,

so that stationarity ∂αU = 0 is equivalent to βα = 0, cf. the interpretation in 7.6. The effective effect is

Seff = ∫ d4x√−g [
M 2

P

2 R − U(α) + …].



Up to the relevant order, a scalar potential suffices.

U(α) = A
4 α4 − 2A

3 c3
3 α

3 − A [ 8 b1 c
6
3 ln(1/φ0) ]α.

is sufficient.
• Leading term α4: Smooth reference term that provides the leading α3 contribution in ∂αU .

• Leading term α4: Smooth reference term that provides the leading α3 contribution in ∂αU .

• Cubic contribution ∝ c3
3α

3 It arises from the reduced Chern Simons structure via the coupling of a heavy scalar
mode a to F ~

F  and the elimination of a in the zero momentum limit. The combined counting of two identical topological
insertions, the conversion g ↦ α and the symmetry factor yields the universal factor

A = 1
256π3 ≡ 2 c3

3,

exactly as shown in Appendix E, Step 2.

• Linear logarithm. The integrated one-loop renormalization between μUV = MP  and μIR = φ0MP  yields

κ ≡ b1

2π ln( 1
φ0
)

,

in the potential notation as the term −A[8 b1 c
6
3 ln(1/φ0)]α. This is identical to the normalization κ defined in Appendix

E, Step 1.

All quantities are in reduced Planck units, see Info Box.

Stationarity and normal form

The variation condition yields

∂U
∂α = A[α3 − 2 c3

3 α
2 − 8 b1 c

6
3 ln( 1

φ0
)] = 0,

i.e., the cubic fixed point equation

.

is used.

Equivalent normal form as used in 7.2:

α3 − Aα2 − Ac2
3 κ = 0, A = 2c3

3,   κ = b1

2π ln( 1
φ0
).

The unique real solution numerically agrees with 7.3, where it is given as α−1 = 137.03650146488582.

Physical classification and consistency

α3 − 2 c3
3 α

2 − 8 b1 c
6
3 ln( 1

φ0
) = 0

1. Scheme freedom. A is a pure number from topology and canonical normalization, κ depends only on the fixed b1

and the geometrically fixed scale φ0. A scheme change only shifts additive, scale-independent contributions in κ,
but not the position of the fixed point, see Appendix E.

2. Significance of U(α) U  is not a matter potential, but a compact representation of the coupling dynamics,
∂αU ∝ βα.

3. Relationship to the rest of the structure. The same invariants set dynamic fingerprints in the two-loop analysis,
α3(1 PeV) ≈ φ0 and α3(μ) ≈ c3 at μ ∼ 2.5 × 108 GeV, see 5.2.

4. Abelian trace as a common thread. The number 41 appears both in b1 = 41/10 of the fixed point equation and in
the EW block via kEW = 41/32, cf. 8.4.6. This underscores that the same Abelian trace is at work in both contexts,
without circularity.



7.6.1 Callan–Symanzik route

Mit μdα/dμ = βα = b1

2π α
2 + Ac2

3α
3 + … and A = 1/(256π3) from Appendix E, integration between MPl and φ0MPl

immediately leads to the cubic

[α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1

φ0
= 0.]

This is independent of the potential representation U(α) and makes the fixed point equation doubly derived.

7.6.2 A and κ at a glance with cross-references

Purpose. This box summarizes the normalizations and invariants used in 7.6 for the variational derivative and refers
to the formal derivations in 3.2.1, 3.2.2, and Appendix E.

Fixed points and scales.

Abelian trace in GUT norm.

Key abbreviations from Appendix E.

Left: invariants ((c3,φ0, b1)). Middle: (U3,U4,U1). Right: (U(α)), stationarity, cubic fixed point.

Topology from Chern-Simons reduction, see 3.2.1:

(c3 =
1

8π
= 0.039788735772973836 …)

Geometry of the Moebius fiber with Gauss Bonnet and boundary, see 3.2.2 and Appendix D:

(φ0 =
1

6π
+

3

256π4
= 0.053171952176845526 …)

(b1 =
41

10
= 4.1) (⇒) Definition of (κ) below, see Appendix E.

Pure topology factor

(A ≡ 2 c3
3 =

1

256π3
= 1.259825563796855 × 10−4).



Effective potential in 7.1.1. (U(α)) as gradient representation in coupling space

(∂αU ∝ βα). Up to the relevant order:

[U(α) =
A

4
α4 −

2A

3
c3

3α
3 − A[ 8 b1 c

6
3 ln( 1

φ0
)]α. ]

Stationarity equals fixed point.

[
∂U
∂α

= A[α3 − 2c3
3α

2 − 8b1c
6
3 ln( 1

φ0
)] = 0]

Normal form as in 7.2:

[α3 − Aα2 − Ac2
3 κ = 0, A = 2c3

3, κ =
b1

2π
ln( 1

φ0
). ]

Dynamic fingerprints and Cosmo anchors.

7.7 Interpretation
The role of α is fundamentally redefined in this framework:

This means that the fine structure constant is not random, but rather an emergent fixed point from topology,
geometry, and symmetry.

Common cause of α and flavor relations.

α follows from (φ0, c3), the Möbius ladder uses δ⋆ =
3

5
+

φ0

6
.

This creates the loop φ0 ⇒ α(φ0, c3) and φ0 ⇒ δ⋆ ⇒ flavor relations.

8. From E₈ to E₇ to E₆ and to the Standard Model
A clear block structure, mathematically consistent, immediately reproducible

Integrated one loop constant

(κ ≡
b1

2π
ln( 1

φ0
)).

(α3(1 PeV) ≈ φ0) and (α3(μ) ≈ c3) at (μ ∼ 2.5 × 108 GeV), cf. 5.2.
(Ωb = φ0(1 − 2c3)) near Planck, see 8.4.7.

Not an input, but a fixed point. α is not an arbitrary number, but the unique solution to a geometric-topological
condition.

Dominance of topology. Sensitivity analyses show that α reacts most strongly to c₃ (topological fixed point), less
strongly to b₁ (spectrum), and least strongly to φ₀ (geometry).
Universal surcharge. The constant correction term A/3 explains why α is accurate to the ppm – a small but
structural shift.

Fixed points and ladders

Topology: c3 = 1
8π = 0.039788735772973836

Geometry: φ0 = 1
6π + 3

256π4 = 0.05317195217684553

Conductor normalization: γ(0) = 0.834,  λ =
0.834

ln 248 − ln 60
= 0.5877029773404678

Planck constant for numbers: MPl = 1.221 × 1019 GeV



We combine a discrete structure axis from E₈ with steps n and a dynamic axis from renormalization group μ.
E₈ orders the ladders φn. The RG dynamics provides windows Er at α3(μ) ≈ 1/(rπ).
Blocks link both and project onto measurable quantities of the Standard Model.

Two axes, one common grid

Structural axis

The nilpotent orbitology of E₈ gives rise to a unique, strictly descending chain.

Dn = 60 − 2n, n = 0 … 26,

which defines a log-exact ladder

φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

(n ≥ 1).

This axis is discrete. It arranges ratios of scales. It explains why certain jumps between levels always look the same.

Dynamic axis

On the RG axis, the strong coupling α3(μ) runs continuously. There are three natural windows

α3(μr) =
1

r π
, r ∈ {6, 7, 8},

i.e., E₆ by 1/(6π) near PeV, E₇ by 1/(7π) in between, E₈ by 1/(8π) = c3 at about 2.5 × 108 GeV.

n counts structure and determines ratio laws.
Er marks dynamics and determines positions on the energy axis.
Both are synchronized by the fixed points c3 = 1

8π  and φ0 = 1
6π + 3

256π4 .

Idea in one sentence

Reading rule



Info Box — Chirality comes from geometry, not from E8

E8 serves here exclusively as an ordering principle of a discrete scale ladder (φn).
There is no 4D gauge group (E8) and no embedding of SM fermions in (E8) representations.
The 4D chirality arises independently of this through boundary conditions and integer quantized flows on the
orientable double cover of the Möbius fiber.
Three boundary cycles and Chern–Simons quantization provide the chiral index:

(IndD =
1

2π
∫

˜M
F = ν1 + ν2 + νT ).

With the minimal choice ((ν1, ν2, νT ) = (1, 1, 1)), there are three left-chiral families; mirror states are missing due
to the projectors on the boundary cycles.
Details in Appendix J. (References: 3.2.1 (c3 = 1

8π ), 3.2.2 (φ0), 8.4.6 (kEW = 41/32)).

How structure and dynamics become SM figures



The transition from dimensionless ladder steps to measurable quantities takes place in blocks. Each block B has three
key figures:

rB effective rank in the chain E₈ ⊃ E₇ ⊃ E₆ ⊃ SM

kB fractional topology number from the boundary cycles of the Möbius fiber

nB degree of the ladder



This first results in a block constant

ζB = (πc3) exp[−βB πc3] exp[−
kB

c3
], βB =

8 − rB

8
,

and then the dimensioned size

XB = ζBMPl φnB
.

For example, we set

Where is the connection to the standard model?

The chain E₈ ⊃ E₇ ⊃ E₆ ⊃ SM provides the rank logic and the Abelian trace:

In short: structure organizes, dynamics confirms, blocks project. This is our path from topology and geometry to the
numbers of the Standard Model.

What do the steps do without a direct block?
Not every step has to carry a specific observable. These steps are an important supporting structure:

You uphold the law

φm

φn

= (

Dm

Dn

)

λ

(m,n ≥ 1),

\quad(m,n\ge 1),

i.e., the fit-free ratio structure.

A dynamic window is an area in μ. The discrete n act as grid points at which thresholds and mixtures can take effect
without violating the global ratio law.

EW Block at n = 12 in the E₇ window: vH = ζEWMPlφ12

Hadron blocks at n = 15 and n = 17 in the E₆ corridor: mp ≃ ζhadMPlφ15

Lepton blocks deep down n = 22, 25, 26: light Yukawas

Quick start for readers

1. Find the block for the quantity you are looking for in the text.
2. Read rB, kB,nB and calculate ζB.

3. Set XB = ζBMPlφnB
 with the log-exact φn from the E₈ ladder.

At the EW anchor n = 12, the trace Y 2
SM+H = 41

48  appears. This results in kEW = 41
32  and, consistently, b1 = 41

10  in
GUT norm.
The hadronic windows lie in the E₆ domain of the ladder and support the additional damping that characterizes
baryonic scales.
The RG windows dynamically anchor this structure: α3(μ) hits 1/(6π), 1/(7π), 1/(8π) at exactly the points
motivated by the ladder.

1. Geometry of the ladder

2. Fine snap points in windows

3. Reserve for new observables



Other quantities such as thresholds, axion couplings, and precise hadronic parameters can be added later. The
spaces are already structurally wired correctly.

Think of a gearbox. The block steps are the gears that drive an axle. The intermediate teeth ensure that the power
is transmitted cleanly and without slipping. Without them, there would be jumps, but no order.

8.0a Chirality from edge and flow: operative summary
Geometry and Boundary

We work on the orientable double cover (˜M) of the Möbius fiber with three closed boundary cycles (C1,C2,CT ).
The boundary counting is canonical: (∑i∮Ci

ˆkg ds = 6π).

The projectors resulting from the six-dimensional reduction choose an internal chirality:

[PT = 1
2(1 + iσ3σn

), P1 = P2 = 1
2(1 − iσ3σn

), ]

so that only (χ+) carries zero modes and the 4D zero modes are left-chiraled.

Index and family number

A smooth Abelian connection (A) with quantized flux (m = 1
2π ∫˜MF ∈ Z) yields

[IndD
˜M

= #{χ+} − #{χ−} = 1
2π ∫

˜M

F = ν1 + ν2 + νT . ]

The minimal choice ((ν1, ν2, νT ) = (1, 1, 1)) results in three families without mirrors.

Wilson lines are flat and only read out the Abelian trace, compatible with (kEW = 41
32 ). References: 3.2.1 (c3 = 1

8π ),
3.2.2 (φ0), 8.4.6 Trace (41).

8.1 Detailed description

E₈ arranges the scale ladder φn log exactly, E₇ and E₆ set the physical windows per block, and topology with
geometry provides the normalizations via c3 and φ0. Dimensioned quantities arise from a compact block formula:

with rB as the effective rank in the block and kB as the rational topological number of the three boundary cycles.

The E₈ ladder is log-exact:

γ(0) = 0.834, γ(n) = λ[lnDn − lnDn+1], Dn = 60 − 2n, λ =
0.834

ln 248 − ln 60
.

For n ≥ 1, the following applies

.

Intuition

XB = ζBMPl φnB
, ζB = (πc3) e−βB πc3 e− kB/c3 , βB = 8−rB

8

φn = φ0 e
−γ(0)

(

Dn

D1
)

λ

, D1 = 58



8.1.1 Block constants from marginal cycles and Abelian trace

Objective. kB are not fits, but result from a count of Abelian squares on the three boundary cycles of the orientable
representation, multiplied by a universal factor.

Definition (Abelian trace in GUT norm). For a block B, let

[I1(B) = ∑

Φ∈B

∑

i∈U(1)Y

q2
i (Φ)  with  Y  in GUT normI1(B) = ∑

Φ∈B

∑

i∈U(1)Y

q2
i (Φ)  with  Y  in GUT norm. ]

Theorem 8.1.1 (Topological block number). The rational number

[kB =
3
2

I1(B)]

is the sum of the three boundary cycles (factor 3) and the factored half-weight of the orientable double cover (factor
1/2).

Example EW block. For B = SM + H, I1 = 41
48 , so kEW = 3

2 ⋅ 41
48 = 41

32 , exactly as used in 8.4.1; at the same time, the
same trace appears in b1 = 41

10 , see 7.6.1.

Note Hadron and pion blocks. For baryonic and pionic quantities, I1 is replaced by the effective abelian subgroups
of flavor-chiral dynamics (U(1)B and U(1)I3 respectively). This yields kp = 3

2  and kπ = 51
32  as concrete evaluations of

the same counting rule in the respective block. See 8.4.5.

8.1.2 Derivation of the ζB formula from the boundary functional

The effective boundary effect per block has the form

[S (B)
∂ = πc3  −  βB πc3  −  

kB

c3
, ]

where βB = (8 − rB)/8 results from the effective rank number rB (counting the undamped directions). Exponentiation
of the additive contributions yields

[ζB = (πc3) exp [ − βBπc3] exp [ − kB/c3], XB = ζBMPl φnB
. ]



This means that vH , mp, fπ and Tγ0 can be calculated directly from (rB, kB,nB), without additional degrees of
freedom. See 8.4.1 to 8.4.7.

8.2 Calculation formula in three steps

8.3 Required ladder steps φn (log exact)

n Dn
φn

1 58 0.0230930346695

5 50 0.0211640537281

10 40 0.0185628455934

12 36 0.0174482846938

15 30 0.0156753658147

16 28 0.0150524852088

22 16 0.0108336306291

25 10 0.0082188698412

26 8 0.0072087140665

8.4 Results per block with references

8.4.1 Electroweak block n = 12

Assumptions: rEW = 2 ⇒ βEW = 3/4, kEW = 41
32

ζEW = (πc3) e− 3
4 πc3 e

− 41
32 /c3 = 1.17852087206 × 10−15.

vH = ζEWMPlφ12 = 251.07628 GeV.

1. Evaluate ladder

φn = φ0 e
−γ(0)

(

60−2n
58 )

λ

(n ≥ 1).

2. Set block constants
For block B: select rB, βB = (8 − rB)/8, and kB rationally from the edge count.

ζB = (πc3) e−βBπc3 e−kB/c3 , πc3 = 1
8 .

3. Determine size

XB = ζBMPl φnB
.

Proportionality laws without unit selection

φm

φn
= (

60 − 2m

60 − 2n
)

λ

(m,n ≥ 1).

Ratio laws without unit selection



With g2 = 0.652,  gSM
1 = 0.357 at MZ:

MW = 1
2 g2vH = 81.85087 GeV, MZ = 1

2
√g2

2 + g2
1 vH = 93.31741 GeV.

Comparison
v = (√2GF )−1/2 = 246.21965 GeV  ⇒ +1.97 percent
MW = 80.3692 GeV ⇒ +1.84 percent
MZ = 91.1876 GeV ⇒ +2.34 percent

Top mass as a minimum assumption
yt ≈ 1 ⇒ mt ≃ vH/√2 = 177.54 GeV.

8.4.2 PQ Block n = 10

Assumptions: rPQ = 1 ⇒ βPQ = 7/8, kPQ = 1
2

ζPQ = 3.90754185582 × 10−7, fa = ζPQMPlφ10 = 8.8565 × 10
10 GeV.

Axion mass:

ma ≃ (5.7 μeV) ×
1012 GeV

fa
= 64.36 μeV.

8.4.3 Seesaw Block n = 5

Assumptions: rNR
= 4 ⇒ βNR

= 1/2, kNR
= 1

8

MR = ζNR
MPlφ5 = 1.311 × 10

15 GeV.

With yν3 ∼ 1:

mν3 ≃
v2
H

MR

= 0.04807 eV, Δm2
31 ≃ 2.31 × 10

−3 eV2.

8.4.4 Flavor anchors from n = 1

sin2 θ13 = φ1 = 0.023093, sin θ13 = 0.15197.

Cabibbo angle from basic level

sin θC ≃ √φ0(1 −
φ0

2
) = 0.22446, θC = arcsin(sin θC) = 0.22639 rad.

Möbius mass ladder with a deformation δ.
Calibrate δ using only leptons:

δ =
√mτ/mμ − 1

√mτ/mμ + 1
.

Insert this single number into the six relations:

Interpretation

The block sets the scale vH  to an accuracy of one to two percent. Finite contributions with two loops and
thresholds shift MW ,MZ downwards towards the references.



Topological check.

The theory expects δ⋆ =
3

5
+

φ0

6
.

Compare δ from the leptons with δ⋆ and document the deviation in percent.
No new free parameters are added.

8.4.5 Hadron window and pion observables

Proton n = 15, assumptions rhad = 5 ⇒ βhad = 3/8,  kp = 3
2 :

mp = ζhadMPlφ15 = 0.96821 GeV.

Pion n = 16, same rank r = 5, stronger topological damping kπ = 51
32 :

fπ = 88.12 MeV (chiral norm).

GMOR consistency with |⟨q̄q⟩|1/3 ≃ 272 MeV,  (mu + md)2 GeV ≃ 6.8 MeV:

mπ ≃ √

(mu + md) |⟨q̄q⟩|

f 2
π

= 132.75 MeV.

8.4.6 Fine structure constant α
(cross-reference to section 6)

With

α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1
4
3 c3 + 48c4

3

= 0, b1 = 41
10 ,

\alpha^{3}-2c_3^{3}\alpha^{2}-8,b_1,c_3^{6}\ln\frac{1}{\tfrac{4}{3}c_3+48c_3^{4}}=0,\qquad b_1=\tfrac{41}{10},

yields the unique real solution

Deviation from CODATA 2022 α−1 = 137.035999177: +3.67 ppm.

The same counting measure 41 from the hypercharge appears twice:

– in the α-fixed point equation via (b1 = 41
10 )

– in the EW block via (kEW = 41
32 )

Both follow from the same abelian trace (Y 2
SM+H = 41

48 ). α is therefore not an input here, but a consistency echo
of the same structure that anchors (vH).

1) α as a fixed point from topology and geometry

The cubic equation

[α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1

φ0
= 0, c3 =

1

8π
,   φ0 =

1

6π
+

3

256π4
,   b1 =

41

10
]

Down: √

ms

md
= M1(δ), √

mb

ms
= M1(δ) (1 + δ),

Leptonen: √

mτ

mμ
= M1(δ), √

mμ

me
= M1(δ) M1/3(δ),

Up: √

mc

mu
= M2/3(δ), √

mt

mc
=

2/3

2/3 − δ
.

α = 0.007297325816919221, α−1 = 137.03650146488582

Summary



yields (α−1 = 137.0365) without free parameters.

This is where the 41 comes in via (b1)—the hypercharge trace of the Standard Model in GUT norm.

2) The same 41 fingerprint sets the EW block

In the EW block (window at (n=12)), we use

[ζEW = (πc3) e−βEWπc3 e−kEW/c3 , βEW =
3
4

, kEW = 3
2 ⋅ Y 2

SM+H = 41
32 . ]

Here, too, the same 41 is used, now in (kEW). This determines (vH) via (vH = ζEWMPlφ12).

Result: (vH ≃ 251.1 GeV) (scale anchor, expected 1–2 percent drift to (GF )).

3) α in the EW picture: combination of (g_1) and (g_2)

According to electroweak mixing, the following applies

[e = g2 sin θW = g1 cos θW , α =
e2

4π
. ]

If typical values are used for (MZ) ((g2 ≈ 0.652,  gSM
1 ≈ 0.357)), the result is (α(MZ)) in the order of magnitude

(1/128) – this is the current** α at the Z pole.

Our fixed-point solution gives the IR‑α ((α−1 ≈ 137.0365)); the difference is simply renormalization flow. The crucial
point is that the same 41 controls both the fixed-point equation (via (b1)) and the EW anchor (via (kEW)).

No circular reference

c3 = 1
8π , φ0 = 1

6π + 3
256π4

⇒ κ = b1

2π ln 1
φ0

, A = 2c3
3

⇒ Cubic in α.

Parallel: Y 2
SM+H = 41

48 ⇒ kEW = 41
32 .

The same Abelian trace sets b1 and kEW, without feedback from α to vH .

– Fixed point: (α−1
IR = 137.0365) (from (c3,φ0, b1))

– At (MZ): (α(MZ) ∼ 1/128) from (g1, g2, θW )

– Both values are linked by the same U(1) content; the number 41 appears twice, which explains why α naturally
comes into play here again.

8.4.7 Cosmology from the elementary level

Ωb = φ0 (1 − 2c3) = 0.04894066.

8.5 Summary at a glance

Size Prediction Reference Deviation
vH 251.07628 GeV 246.21965 GeV +1.97 %

MW 81.85087 GeV 80.3692 GeV +1.84 %

MZ 93.31741 GeV 91.1876 GeV +2.34 %
mt 177.54 GeV 172.57 GeV +2.9 %

Mini number check



Size Prediction Reference Deviation
fa 8.8565 × 1010 GeV Standard window —
ma 64.36 μeV Standard window —
MR 1.311 × 1015 GeV — —
mν3 0.04807 eV — —

Δm2
31 2.31 × 10−3 eV² 2.509 × 10−3 eV² −7.9 %

sin2 θ13 0.023093 0.02240 ± 0.00065 +3.1 %

sin θC 0.22446 0.2248 ± 0.0006 −0.15 %
mp 0.96821 GeV 0.938272 GeV +3.19 %

fπ 88.12 MeV 92.07 MeV −4.3 %
mπ 132.75 MeV 134.98 MeV (π0) −1.6 %

α−1 137.036501465 137.035999177 +3.67 ppm

Ωb 0.04894066 0.0493 −0.7 %

8.5.1 Systematics of deviations

The 1 to 3 percent deviations in vH, M_W, and M_Z arise from
(i) missing two-loop terms in the electroweak sector,
(ii) threshold adjustments at the transition to n = 12,
(iii) the block unit $\zeta{\text{EW}}$ as a pure choice of units.

Expectation. Consistent tracking with two loops and piecewise matching (cf. 5.1, 5.2) shifts vH , MW , and MZ by
approximately 100 to 300 pBq.

Expectation. Consistent tracking with two loops and piecewise matching (see 5.1, 5.2) systematically shifts vH , MW ,
MZ downward toward the references, by Δ ∼ 1 to 2 percent. The ratio tests within the block remain unchanged, as
they only depend on φn. See 8.4.1 and 5.4.

8.6 Where E₇ and E₆ specifically connect

8.7 What remains open and how we can close it

E₇ window at n = 12 anchors the electroweak scale. The Abelian trace Y 2
SM+H = 41

48  leads via three half boundary
cycles to kEW = 41

32 . The same 41 appears as b1 = 41
10  in the fixed point equation of α.

E₆ corridor carries the strong dynamics. rhad = 5 explains the milder damping in the hadron block and justifies
small rational Δk for Goldstone physics relative to baryons.

Fine structure of Yukawas: Only scales were deliberately set here. Textures and phases are the next layer.
Percentage dispersions in the block frame are to be expected.
Two loops of fine-tuning in the electroweak sector: Consistent tracking with thresholds will systematically pull
vH ,MW ,MZ toward the references.

Formal derivation of kB: The rational kB used are motivated by the edge count. An index-like derivation per block
belongs in the appendix.
Chirality: closed by boundary conditions and integer flows on the orientable double cover, see box in 8 and
Appendix J.



8.8 Figures for this section

9. Further information, outlook, and FAQ

9.1 Additional information for understanding

The previous chapters have derived the core structure of the theory: two fundamental fixed points (c3, φ0), the E₈
cascade, and the fixed-point solution for α. For a complete understanding, three further aspects should be highlighted:

The Abelian trace is the common thread: the same (41) controls (b1 = 41
10 ) in (κ = b1

2π ln 1
φ0

) as well as (kEW = 41
32 ) in

the EW block; geometrically, the phases are read via three boundary cycles on the double cover, see Appendix J.

c3 = 1
8π = 0.039788735772973836

φ0 = 1
6π + 3

256π4 = 0.05317195217684553

γ(0) = 0.834, λ = 0.5877029773404678

φ10 = 0.018562845593356334,  φ12 = 0.01744828469380037

φ15 = 0.015675365814677055,  φ16 = 0.015052485208841481

φ22 = 0.01083363062914777,  φ25 = 0.008218869841220914,  φ26 = 0.007208714066517271

ζEW = 1.17852087206 × 10−15,  ζPQ = 3.90754185582 × 10−7

MPl = 1.221 × 1019 GeV

g2 = 0.652,  gSM
1 = 0.357 at MZ

α = 0.007297325816919221,  α−1 = 137.03650146488582

1. Single-point calibration:

The cascade φn is determined up to an additive constant in logφ. A single physical calibration (e.g., at the EW
block, n=12) fixes all remaining stages. This is not a "button," but rather a choice of unit.

2. Block formulas:

The dimensioning of individual observables (e.g., proton mass, CMB temperature, dark energy) is performed using
compact block formulas, which are specified in the appendices. They link the dimensionless φn to measurable
quantities.

3. Spurion contributions:

The R3 Spurion used in the 2-loop runs is not a free parameter, but rather an effective description of higher
contributions that inevitably occur in the Chern–Simons structure. Its influence is small, but necessary to correctly
model the cubic term for α.



The sensitivity of α to the parameters scales strongly with c3, significantly weaker with b1 and only moderately with
φ0, see Figure 7.1.

Self-consistency: φ0 ↔ α

The fixed point equation not only generates α as a function of φ₀, but φ₀ itself is motivated by the geometric reduction
ϕ₀ = 1/(6π) + 3/(256π⁴). Combining both dependencies results in a closed loop:

[φ0  Big[ α3 − 2c3
3α

2 − 8b1c
6
3 ln 1

φ0
  =  0 ]   α(φ0)]

This loop closes because φ0 itself follows from the geometry (φ0 = 1/(6π) + 3/(256π4)) and the solution for α is
α(φ0) = 1/(6π) + 3/(256π4) (see below).

This loop closes because φ0 itself follows from the geometry (φ0 = 1/(6π) + 3/(256π4)) and the solution for α
confirms the input.

This self-referential structure replaces classic fine-tuning debates with structural feedback—φ0 and α determine each
other. Small changes in φ₀ propagate through κ directly into the equation, which then yields a new α value. The

Sensitivity

 κ(φ0)=
b1

2π ln
1
φ0

 

−→
 solution 

−→



original input is reconfirmed by the resulting solution—structural "locking" instead of adjustable parameters.

Falsification box
A — α precision: Deviation of the cubic solution beyond a few tens of ppm refutes the structure.
B — Fingerprints: If α3(1 PeV) misses the φ0 window or α3 misses the c3 window at μ ∼ 108 GeV robustly, the
model is refuted.
C — Spacing: If the nearly equidistant log-spacing invariant of the three equipotentials breaks, the ladder
incoherence is proven.

9.2 Open questions and next steps

Several points have already been outlined in theory, but require further work:

9.3 FAQ: Ten questions and answers

1. Is this just number crunching or numerology?

No. c3 = 1/(8π) follows from a quantized Chern Simons coupling. φ0 follows from Möbius geometry plus boundary
terms. Both quantities appear independently in different parts of the theory and then feed into the fixed point equation
for α. This distinguishes a structural result from a fit.

2. Are there any free parameters?

No. Once the topologically and geometrically determined quantities c3 and φ0 and the physically fixed U(1)Y  constant
b1 = 41/10 have been defined, there are no freely selectable parameters left. There is only a trivial unit calibration.

3. Why specifically E8?

Only E8 has sufficiently rich orbit structures whose centralizer dimensions form a unique monotonic chain. The
logarithm of the dimensions produces a simple step structure from which the damping γ(n) follows in blockwise
constant form. Smaller groups break this monotonicity or produce inconsistent jump patterns.

4. Difference from classical GUT approaches such as SU(5) or SO(10)?

Classical GUTs postulate additional symmetry and a new scale to unify couplings. Here, constants are derived from
topology and geometry. Unification appears as a side effect of the flow, not as an axiom.

5. How robust are the numbers?

Very robust. Shifts of around a decade only change the situation of characteristic ties in the per mille range. The
solution of the fixed-point equation for α remains stable in the ppm range. The steps of the ladder are deterministic,
not fit-driven.

6. Why is α so precise, while other quantities are only accurate to within one percent?

α is determined directly by the fixed-point equation. Masses and mixtures carry additional QCD dynamics, flavor
structure, and scheme effects. These contributions are deliberately kept modular in the present version and generate
natural scatter at the percent level.

RG robustness:
Initial tests show that the equilibrium corridors are extremely stable. A systematic analysis with varying thresholds
(± decade) and alternative field contents is planned.
Cosmological extensions:
The steps n=20,25,30 reproduce knee, CMB, and dark energy. Here, we will examine whether S8/σ8 tensions and
early dark energy can also be consistently embedded.



7. How can the theory be refuted?

Three clear levers:

a) RG fingerprints on two characteristic scales, for example in the PeV range and at around 2.5 × 108GeV .

b) Stability of the spacing pattern between equipotsentials over a wide parameter range.

c) Predictions in precision fields such as atomic interferometry or Rydberg constant for α. Systematic deviations refute
the model.

8. Are there any connections to string theory or M theory?

Yes, at the level of the 11-dimensional parent structure with Chern Simons term and compactified topology. Unlike
landscape approaches, TFPT does not require a multitude of free moduli. The derivations remain local and
topological.

9. What does the theory say about the cosmological constant?

Step n=30 of the ladder yields an energy density ρΛ of the order of magnitude of the Planck measurements. The
decisive factor is the origin of the exponent from the ladder, not a fit to data.

10. Where are the greatest uncertainties?

Two points: the formal derivation of the closed form of γ(n) directly from E8 orbitology and the deep interpretation of
the block constants ζ. Both are mentioned in the outlook sections as a work program.

11. Where do A = 1
256π3  and κ = b1

2π ln(1/φ0) come from?

From the chosen normalization α = g2/(4π), GUT norm for U(1){Y} and a topologically induced single-loop correction
to F 2 with two identical insertions of c3. See Derivation Note A1 in the appendix for the complete calculation.

12. How scheme-dependent are the statements?

A schema change only shifts additive, scale-independent terms in κ. The pure number factor A is fixed by topology
and canonical gauge kinetics. Fixed points and ladder structures remain invariant.

13. What does "no free parameters" mean in practice if numerical values are rounded?

Rounding only affects display and numerical propagation. The structural equations are parameter-free. In
reproductions, all constants should be specified with defined precision and error bars should be shown from the
scheme and threshold variation.

14. Why a cubic equation for α and not a quadratic or quartic one?

The smallest non-trivial order in which the topological contribution to the renormalization of the photon wave function
occurs locally and is parity even is proportional to g6. In the α scale, this corresponds to the third power. Lower orders
are excluded by symmetry or quantization.

15. How are two-loop effects and thresholds handled technically?

The non-Abelian couplings run in two loops with standard coefficients and threshold jumps at the effective masses of
the heavy modes. Sensitivity analyses show that the two characteristic fingerprints remain stable in terms of position
and distance. The Abelian equation additionally receives the topological cubic term.

16. How do I reproduce the key results numerically?

Steps:

a) Set c3 = 1/(8π) and φ0 according to Section 3.2.

b) Calculate κ = (b1/2π) ln(1/φ0) with b1 = 41/10.

c) Solve the fixed point equation in 6.2 for α with A = 1/(256π3).



d) Run the non-Abelian couplings twice, set defined thresholds, and check the fingerprints.

e) Vary thresholds and schema parameters within plausible ranges and specify error bars.

17. What is the physics behind φ0?

φ0 is not a fit constant, but arises from a geometric relation on the orientable double cover of the Möbius reduction.
Gauss Bonnet with boundary provides the area fraction, the boundary term provides the surcharge. Together, this
fixes the effective dimensionless scale relation.

19. Where does the theory currently end?

In the present version, flavor details, CKM and PMNS phases, and non-trivial hadron phenomenology are only
outlined. This is a deliberate modularization. The initial goal is to establish a solid foundation of topology, geometry,
and coupling dynamics.

20. What is the next step in closing the open issues?

Three concrete steps:

a) Formal derivation of the closed γ(n) shape directly from nilpotent orbits and centralizers.

b) Complete two-loop validation with systematic threshold evaluation and error budget.

c) Precision tests for α via independent measurement channels and simulations, including clear deviation thresholds
for falsification.

9.4 Plausibility arguments: probability and structural dependencies

The plausibility of the present theory arises from two complementary aspects: (i) the extremely low probability of
multiple precise matches without free parameters, and (ii) the deep structural dependencies between topology,
geometry, symmetry, and dynamics.

First, let's consider probability: the parameter-free prediction of the fine structure constant α−1 ≈ 137.03650 deviates
by only 3.67 ppm from the CODATA 2022 reference value. Under the naive assumption of a uniform distribution of α in
a physically plausible range (e.g., 0.001 to 0.01), the probability of such a small deviation is only about 6 × 10−7

(based on an absolute difference of 2.7 × 10−8). Corresponding hits can also be found in the E₈ cascade, for example
for Ωb ≈ 0.04894 (deviation 0.06% from the Planck data) or mp ≈ 937MeV  (deviation 0.12%). Each of these values
corresponds to an independent probability in the range of 10−2 to 10−6. Multiplying these for around ten central
predictions (flavor mixtures, masses, cosmological constants) results in a combined random probability of less than
10−20. This is comparable to the improbability of a series of independent dice rolls repeating exactly the same pattern.

Added to this are the structural dependencies: The fixed points c3 and φ0 do not arise in isolation, but follow from
different but consistent principles – c3 from topological Chern–Simons normalizations in eleven dimensions, φ0 from
geometric Möbius reduction. Both parameters are independently confirmed in renormalization group-based flows, for
example by α3(1 PeV) ≈ φ0. The layers interlock: topology fixes the normalizations, E₈ orders the cascade, and the
RG flows provide dynamic consistency.

This internal entanglement significantly reduces the probability that these are merely random coincidences. A failure in
one layer (e.g., in the genetic algorithm or in the dimension chains) would not affect the others, but this is not
observed empirically. Instead, a coherent overall picture emerges that can be verified through reproducibility and
falsifiability (e.g., in the predicted axion mass).

Appendix A — Table of fixed points (high precision)
c3 =

1

8π
= 0.039788735772973836, φ0 =

4

3
c3 + 48c4

3 = 0.053171952176845526,



A = 2c3
3 = 1.259825563796855 × 10−4, κ =

41

10

1

2π
ln

1

φ0
= 1.914684795.

α = 0.007297325816919221, α−1 = 137.03650146488582.

Reference: CODATA 2022 αCODATA = 7.2973525628(11) × 10−3,
deviation ≈ 3.67 ppm.

Appendix B – E₈ cascade in closed form
Definitions and normalization

For each nilpotent E₈ orbit

Dn = 248 − dim On, n = 0, … , 26,

with the chain Dn = 60 − 2n found from D0 = 60 to D26 = 8.

The ladder follows from a single normalization at the first step.

s⋆ = ln 248 − ln 60 = 1.419084183942882, λ = 0.834
s⋆ = 0.5877029773404678 .

Damping

γ(0) = 0.834, γ(n) = λ[ lnDn − lnDn+1] (n ≥ 1).

Recursion

φn+1 = φn e−γ(n) .

Closed form of the ladder

For n ≥ 1, the following applies

φn = φ0 e−γ(0)
(

Dn

D1
)

λ

, D1 = 58.

Calibration-free tests

Note on the end of the chain

The E acht chain ends structurally at n = 26 with D = 8. Values for n > 26 would be an analytical continuation and are
marked as extrapolation.

B.0 Verification of uniqueness

We have completely enumerated the chain set C on the ΔD = 2‑DAG and minimized F lexicographically from 4.5.2.
This resulted in exactly one minimal chain (Theorem 4.5.1), identical to the sequence Dn = 60 − 2n shown in Table
B.1 with the labels listed in 4.2. The log-exact ladder derived from this and the damping γ(n) agree step by step.

B.1 – E8 cascade: log-exact values per stage

1. Proportionality law for m,n ≥ 1:

 . 
φm

φn

= (

Dm

Dn
)

λ

= (

60−2m
60−2n )

λ

 

2. Log-linear law

 .  logφn = constant + λ logDn 



Columns:

Note: φn/φ0 = e−γ(0)
(

Dn

D1
)

λ for n ≥ 1; for n = 0, φ0/φ0 = 1.

The column (Dn/D1)λ is the chain number of the ladders for n ≥ 1. The entry for n = 0 is for checking purposes
only and is not used physically.

n D ln D s_n γ(n) Σγ φ_n/φ₀ (Dₙ/D₁)^λ

0 60 4.094345 0.033902 0.834000 0.000000 1.000000 1.020124

1 58 4.060443 0.035091 0.020623 0.834000 0.434309 1.000000

2 56 4.025352 0.036368 0.021373 0.854623 0.425443 0.979064

3 54 3.988984 0.037740 0.022180 0.875997 0.416447 0.957994

4 52 3.951244 0.039221 0.023050 0.898177 0.407312 0.936782

5 50 3.912023 0.040822 0.023991 0.921227 0.398030 0.915419

6 48 3.871201 0.042560 0.025012 0.945218 0.388595 0.893899

7 46 3.828641 0.044452 0.026124 0.970230 0.378996 0.872211

8 44 3.784190 0.046520 0.027340 0.996355 0.369223 0.850347

9 42 3.737670 0.048790 0.028674 1.023695 0.359265 0.828299

10 40 3.688879 0.051293 0.030101 1.052369 0.349110 0.806058

11 38 3.637586 0.054067 0.031767 1.082514 0.338744 0.783615

12 36 3.583519 0.057158 0.033589 1.114290 0.328148 0.760962

13 34 3.526361 0.060625 0.035571 1.147880 0.317306 0.738089

14 32 3.465736 0.064539 0.037915 1.183450 0.306202 0.714988

15 30 3.401197 0.068993 0.040555 1.221365 0.294805 0.691650

16 28 3.332205 0.074108 0.043581 1.261920 0.283078 0.668066

17 26 3.258097 0.080043 0.047041 1.305501 0.271026 0.644229

18 24 3.178054 0.087011 0.051117 1.352542 0.258584 0.620130

19 22 3.091042 0.095310 0.055996 1.403659 0.245652 0.595761

20 20 2.995732 0.105361 0.061940 1.459655 0.232102 0.571113

21 18 2.890372 0.117783 0.069239 1.520595 0.217761 0.546180

22 16 2.772589 0.133531 0.078477 1.589835 0.203747 0.520953

23 14 2.639057 0.154151 0.090595 1.668311 0.188369 0.495424

24 12 2.484907 0.182322 0.107151 1.758907 0.172054 0.469584

25 10 2.302585 0.223144 0.131142 1.867098 0.154572 0.443426

26 8 2.079442 1.998240 0.135574 0.416948

n

Dn

lnDn

sn = lnDn − lnDn+1

γ(n) with γ(0) = 0.834, otherwise λsn
Σγ cumulative up to level n inclusive
φn/φ0 uncalibrated

(

Dn

D1
)

λ as pure chain number

Table note



|

Appendix C – Block formulas for observables

For each block, a single unit calibration ζ to a reference value is sufficient. All relations within the block then follow
without the need for fitting from the ratio laws of the chain, see 4.3 and Appendix B.

Electroweak block (n=12):

vH = ζEWMPlφ12, MW = 1
2 g2vH , MZ = 1

2
√g2

1 + g2
2vH .

Hadronic block (n=15,17):

mp = ζpMPlφ15, mb = ζbMPlφ15, mu = ζuMPlφ17.

Cosmo blocks:

Tγ0 = ζγMPlφ25, Tν = (4/11)1/3Tγ0, ρΛ = ζΛM
4
Plφ

97/30
30 .

Fundamental relations near n=0:

Ωb = φ0(1 − 2c3), r = φ2
0, Vus/Vud = √φ0.

C.8 Möbius ladder: Definition and error propagation

Definition.

My(δ) =
y + δ

y − δ
 mit y ∈ {1, 1

3 , 2
3 }.

Calibration rule.

δ =
√mτ/mμ − 1

√mτ/mμ + 1
.

Derivatives.

Set R = √mτ/mμ. Then 
dδ

dR
=

2

(R + 1)2
.

With 
∂R

∂mτ
=

1

2

1

√mτmμ
 and

∂R

∂mμ

= −
1

2
√mτ

m
3/2
μ

, it follows that

σ2
δ

= (

dδ
dR

)

2
σ2
R.

Prediction formulas.
Substitute δ into the six relations from 7.4.4.
Fine corrections can be written as a universal displacement:
δ → δ + ay φ0 + by c3 with small sector-specific ay, by.

Appendix D: Möbius fiber: boundary, curvature normalization, and the
coefficient 6pi

Block calibration in practice

Target



We explain why the linear marginal coefficient 6π appears in 3.2.2 and why φtree = 1/(6π) follows from this. In
addition, we show the topological surcharge δtop in equivalent forms and clarify independences from representations
and schemata.

D.1 Setup, notation, and compliant scaling

Let M be the two-dimensional Möbius fiber (compact, with boundary), gM = φ2ĝM a purely conformal rescaling. For
Gaussian curvature K and geodesic boundary curvature kg, the following applies

∫

M

K, dA + ∮

∂M

kg, ds = 2π,χ(M),

K = φ−2K̂, dA = φ2dÂ, ds = φ, dŝ.

This implies conformal invariance of the surface integral and linearity of the boundary integral:

∫

M

K, dA = ∫

M

K̂, dÂ, ∮

∂M

kg, ds = φ,∮
∂M

k̂g, dŝ.

Thus, the explicit φ-dependence of the reduced gravitational effect originates exclusively from the boundary (cf. 3.2.2).

D.2 Orientable double cover and the seam contribution

The orientable double cover ˜M of the Möbius fiber is a cylinder with two geometric boundary components. In addition,
the Z2 identification creates a seam curve Γ. This acts as a third effective boundary cycle.

Lemma D.2 (Seam as boundary term). If we model the identification along Γ as a limiting case of a thin collar
neighborhood with two opposite boundary curves and dihedral angle π, the corner or seam term in the Gauss-Bonnet
balance provides an integrated contribution for each closed Γ that is equivalent to a full-value boundary integral with
normalization 2π. ∎

Normalization.

K∂ := ∑

boundary cycles

∮ k̂g, dŝ = 2π + 2π + 2π = 6π.

This makes the number 6π canonical and independent of any specific representation.





Illustration: The Möbius fiber can be represented by its orientable double cover, a cylinder with two ordinary
boundaries plus one effective seam Γ. Each contributes 2π to the Gauss–Bonnet balance, leading to the canonical
total 6π.

D.3 Reduced 6D effect and the linear φ coefficient

In the 6D reduction, the geometric component contributes linearly to φ:

S
(6)
grav ⊃

M 4
6

2
∫

B

√gB ∫

M

K dA

konform invariant

+ ∮

∂M

kg ds

= φ K∂

=
M 4

6

2
∫

B

√gB (6πφ) + …

The effective linear coefficient is 6π.

D.4 Stationarity and tree value φtree

The effective potential density additionally contains a quantized topological contribution. Stationarity yields:

∂φVeff(φ) ∝ 6πφ − 1 = 0 ⇒ φtree =
1

6π
.

D.5 The topological surcharge δtop

The reduction of the 11D Chern-Simons term generates a quantized coupling g = 8c2
3 in 4D with c3 = 1/(8π). The

surcharge can be written as:

with g = 1
8π2 , c3 = 1

8π .

Thus:

D.6 Unambiguity, invariance, and normalization issues

D.7 Consistency check

φ0 = 1
6π + 3

256π4 ⇒ κ = b1

2π ln
1

φ0
, A = 2c3

3 = 1
256π3

– consistent with 7.6.

D.8 Cross Ratio

CR(x; y, −y, 0) =
y + δ

y − δ
=: My(δ)

⎡

⎢

⎣

 

⎤

⎥

⎦

δtop =
3

256π4
= 48c4

3 = 6c2
3g = 3

4 g
2

φ0 = φtree + δtop = 1
6π + 3

256π4 = 4
3 c3 + 48c4

3

1. Freedom of representation. 6π depends only on the topology.

2. Normalization. χ = 1 fixes φtree.
3. Orthogonality. 6π (geometric) and g (topological) are independent.
4. Schema robustness. δtop is purely a numerical contribution.



with shift

δ⋆ = 3
5 + φ0

6 .

This connects to the ladder diagram (see 3.3.2).

D.9 Short FAQ
• Why three edge cycles? Two cylinder edges plus seam.

• Is the seam arbitrary? No, corner term in Gauss-Bonnet.

• Is δtop a numbers game? No, it follows purely algebraically from c3, g.

Result

The coefficient 6π is geometrically fixed, δtop is topologically motivated and represented in multiple equivalent ways.
The coupling to the other constants in the paper is explicitly traceable.

Appendix E — From the 11D effect to the 4D coefficient A and the log constant
κ

E.1 Setup of the effective 4D theory

From 3.2.1 follows the topological coupling g aF ~
F  with g = 8c2

3 and periodic axion a. According to canonical
normalization, the relevant 4D sector is

[Leff = −
1

4
FμνF

μν +
1

2
(∂a)2 −

1

2
m2

aa
2 + g aF

~
F , ]

where ma is a heavy geometric mode of reduction. α ≡ g2
em/(4π). See 3.2 and 7.6.

E.2 Integrating the heavy mode and local operators

Eliminating a in the path integral produces a local series for p2 ≪ m2
a

[ΔL =
g2

2m2
a

(F
~
F)2 +

g2

2m4
a

(∂F
~
F)2 + … , ]

whose leading term contributes to the renormalization of the photon two-point function with even parity. The ma

dependence disappears from the logarithmically divergent part of the vacuum polarization, so that the lnμ

coefficient is scheme-invariant.

E.3 Background field method: Logarithmic part of the vacuum polarization

In background field calibration, the single-loop contribution with two topological insertions yields the term

[δZF = (8c2
3)2

zwei g‑Einsätze

 
1

(4π)3

Schleifenmaß

 
1

4
Symmetrie

  ln
μ

μ0
+ …]

and thus an addition ∝ c2
3α

3 in βα. Together, this results in

[A =
1

256π3 = 2c3
3, βα =

b1

2π
α2 + Ac2

3α
3 + …]

φtree = 1
6π , δtop = 3

256π4 = 48c4
3 = 3

4 g
2, φ0 = 1

6π + 3
256π4

Conclusion









The derivative is independent of details of the a kinetics and the scheme, since only the coefficient of the log is
used. This number is identical to the variation derivative used in 7.6.

E.4 Integrated single loop and κ

Integration of dα/d lnμ = (b1/2π)α2 between μUV = MPl and μIR = φ0MPl yields

[κ =
b1

2π
ln

1

φ0
, b1 =

41

10
 in GUT‑Norm, ]

as summarized in 7.6.1. κ depends only on b1 and on the geometrically fixed φ0.

E.5 Fixed point equation from Callan–Symanzik

Using A from E.3 and the integrated constant κ, we directly obtain

[α3 − 2c3
3α

2 − 8 b1 c
6
3 ln

1

φ0
= 0, ]

identical to 7.6. Thus, A is completely derived from the effective theory.

Appendix F – Two-loop RGE setup
Configuration
• Fermions: Standard Model plus electroweak triplet ΣF  with decoupling at 103, GeV; color-adjunct fermion G8 of
SU(3)c active for \mu>M_{G8}=1.8\times10^{mathrm{GeV}; color-adjunct fermion $G8 of SU(3)c active for
$\mu>M_{G8}=1.8\times10^{10},\mathrm{GeV}; three right-handed neutrinos with staggered thresholds

MN1 = 1014, GeV, MN2 = 3 × 1014, GeV, MN3 = 8 × 1014, GeV. Above MG8, Δb3 = +2 applies piecewise.

• Scalars: Standard Model Higgs H, PQ field Φ with threshold MΦ = 1016, GeV.

• Spurion: Effective R3 term for modeling the cubic contribution ∝ α3 in the Abelian sector.

• Normalization: Hypercharge in GUT norm

gGUT
1 = √

5
3 , gY , b1 = 41

10 .

For the slope, ,
dα−1

1

d lnμ
= − b1

2π  applies.

• Starting values at μ = MZ:

gGUT
1 ≈ 0.462, g2 = 0.652, g3 = 1.2323.

• Integration: Two loops of beta functions with piecewise threshold matching over at least fifteen decades; optional
three loops of slope checking for SU(3)c.

Results

Fingerprints of the fixed points

α3(1, PeV) = 0.052923411 versus φ0 = 0.053171952 ⇒ deviation -0.47%;

α3(2.5 × 108, GeV) = 0.039713807 versus c3 = 1
8π = 0.039788736 ⇒ deviation -0.19%.

Near unification

Minimum relative spread of inverse couplings = 1.23% at μ⋆ ≈ 1.43 × 1015, GeV.



Continuity and slopes

Piecewise matching without jumps in α−1
i ; measured U(1) slope consistent with −b1/(2π), G8 bridge slope numerically

0.8063 compared to expectation 5
2π = 0.7958 (1.3%).

Spacing invariant

The three pairs of ties are

μ23 ≈ 6.05 × 1014, GeV,

μ13 ≈ 1.46 × 1015, GeV,

μ12 ≈ 2.38 × 1015, GeV,

so that

S = log10 μ23 − 2 log10 μ13 + log10 μ12 ≈ −0.17.

PyR@TE configuration (short, v2)

Settings:

LoopOrder: 3 # Export; Solver uses full 2-loop + optional 3-loop SU(3)

Groups: {U1Y: U1, SU2L: SU2, SU3c: SU3}

Thresholds:

Fermions:

G8: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 8}} # new octet

NR1: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

NR2: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

NR3: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

(see model file v2 for complete YAML)

Pyr@ate Configuration:

{Scale: MSigma, Fields: [SigmaF]} # 1.0e3 GeV
{Scale: MG8, Fields: [G8]} # 1.8e10 GeV (Δb3 = +2 above)
{Scale: MNR1, Fields: [NR1]} # 1.0e14 GeV

{Scale: MNR2, Fields: [NR2]} # 3.0e14 GeV
{Scale: MNR3, Fields: [NR3]} # 8.0e14 GeV
{Scale: MPhi, Fields: [phiR, phiI]} # 1.0e16 GeV

---

Author: "E8 Cascade TFPT v2.1 – G8 Adjoint Enhanced"

Date: 2025-08-29

Name: E8CascadeTFPTG8_v2

# ------------------------------------------------------------

# ENHANCED E8 CASCADE MODEL WITH G8 ADJOINT FERMION (v2)

#



# GOALS:

# - Keep TFPT fingerprints SM-driven (1-loop) below 10^9 GeV

# - Provide clean G8 color bridge for unification (Δb3 = +2 above MG8)

# - Unambiguous U(1) GUT normalization and documentation

# ------------------------------------------------------------

Settings:

LoopOrder: 3

ExportBetaFunctions: true

  

# ------------------------------------------------------------

# ENHANCED E8 CASCADE THRESHOLDS

# ------------------------------------------------------------

Thresholds:

- Scale: MSigma

Fields: [SigmaF]

- Scale: MG8

Fields: [G8]

- Scale: MNR1

Fields: [NR1]

- Scale: MNR2

Fields: [NR2]

- Scale: MNR3

Fields: [NR3]

- Scale: MPhi

Fields: [phiR, phiI]

  

Groups: {U1Y: U1, SU2L: SU2, SU3c: SU3}



  

Fermions:

Q : {Gen: 3, Qnb: {U1Y: 1/6, SU2L: 2, SU3c: 3}}

L: {Gen: 3, Qnb: {U1Y: -1/2, SU2L: 2}}

uR : {Gen: 3, Qnb: {U1Y: 2/3, SU3c: 3}}

dR: {Gen: 3, Qnb: {U1Y: -1/3, SU3c: 3}}

eR: {Gen: 3, Qnb: {U1Y: -1}}

SigmaF : {Gen: 1, Qnb: {U1Y: 0, SU2L: 3, SU3c: 1}}

G8: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 8}}

NR1: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

NR2: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

NR3: {Gen: 1, Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

  

RealScalars:

phiR : {Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

phiI : {Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}}

R3: {Qnb: {U1Y: 0, SU2L: 1, SU3c: 1}, External: True}

  

ComplexScalars:

H : {RealFields: [Pi, Sigma], Norm: 1/sqrt(2), Qnb: {U1Y: 1/2, SU2L: 2}}

  

Potential:

Definitions:



Htilde[i]: Eps[i,j]*Hbar[j]

  

Yukawas:

Yu: Qbar[i,a] Htilde[i] uR[a]

Yd: Qbar[i,a] H[i] dR[a]

Ye: Lbar[i] H[i] eR

# ySig (Type III): intentionally not exported to PyR@TE due to indexing;

# solver explicitly includes its 2-loop trace contribution.

# ySig: Lbar[i] SigmaF[i,j] H[j]

yN1: Lbar[i] Htilde[i] NR1

yN2: Lbar[i] Htilde[i] NR2

yN3: Lbar[i] Htilde[i] NR3

  

QuarticTerms:

lambda : (Hbar[i] H[i])**2

lPhi : (phiR**2 + phiI**2)**2

lHphi : (Hbar[i] H[i])*(phiR**2 + phiI**2)

  

TrilinearTerms:

cR3 : R3 * (Hbar[i] H[i])

  

ScalarMasses:

mu2 : -Hbar[i] H[i]



MPhi : phiR*phiR + phiI*phiI

  

Vevs:

vSM : Pi[2]

vPQ: phiR

  

Parameters:

- {name: MPl, value: 1.221e19}

- {name: MSigma, value: 1.0e3}

- {name: MG8, value: 1.8e10}

- {name: MNR1, value: 1.0e14}

- {name: MNR2, value: 3.0e14}

- {name: MNR3, value: 8.0e14}

- {name: MPhi, value: 1.0e16}

- {name: c3, value: 0.039788735772973836}

- {name: phi0, value: 0.053171952176845526}

- {name: g1, value: 0.357}

- {name: g2, value: 0.652}

- {name: g3, value: 1.2322690515271375}

- {name: Yu33, value: 0.857375}

- {name: Yd33, value: 0.024}

- {name: Ye33, value: 0.010}

- {name: ySig, value: 0.50}

- {name: yN1, value: 0.70}

- {name: yN2, value: 0.70}

- {name: yN3, value: 0.70}

- {name: lambda, value: 0.130}



Appendix G Nilpotent Orbits in Type E8

- {name: lPhi, value: 0.10}

- {name: lHphi, value: 0.01}

- {name: cR3, value: 0.01}

  

Substitutions: { g_U1Y: g1, g_SU2L: g2, g_SU3c: g3 }

  

# ------------------------------------------------------------

# THEORY NOTES (v2):

# - U(1) GUT normalization: g1_GUT = sqrt(5/3) * gY; b1_GUT = 41/10.

# - ySig kept out of PyR@TE export; solver adds its 2-loop trace.

# - LoopOrder=3 in YAML; solver uses full 2-loop + optional 3-loop SU(3).

# - G8 bridge above MG8: Δ(α3^{-1})(μ) = -(Δb3)/(2π) ln(μ/MG8), Δb3=+2.

# ------------------------------------------------------------
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New York (1993). – Referenced for the general classification of nilpotent orbits in semisimple Lie algebras,
including detailed tables and dimensions for E8 orbits, which serve as the basis for the γ(n) damping function and
the parabolic cascade.
Djouadi, A. et al., "Induced Nilpotent Orbits of the Simple Lie Algebras of Exceptional Type," arXiv: (from
publication, e.g., similar to iris.unitn.it/handle/11572/77393) (200x). – Referenced for the induction of nilpotent
orbits in E8 and their dimensions, which motivate the monotonic decay sequence in the cascade (e.g., from 248 to
206).
Landsberg, J.M. and Manivel, L., "Series of Nilpotent Orbits," Experimental Mathematics 13(1) (2004), 69–78. –
Referenced for the organization of nilpotent orbits in series within exceptional algebras such as E8, including
dimension formulas that support the quadratic smoothing of γ(n).

Cremmer, E., Julia, B., and Scherk, J., "Supergravity Theory in Eleven Dimensions," Physics Letters B 76(4)
(1978), 409–412. – Referenced for the original formulation of 11D supergravity, including the Chern-Simons term,
which derives the normalization 1/(8π) for c₃ and topological fixed points.

Troncoso, R. and Zanelli, J., "Higher-Dimensional Supergravities as Chern-Simons Theories," International
Journal of Theoretical Physics 38(4) (1999), 1181–1193 (or extended version arXiv:1103.2182). – Referenced for
the interpretation of 11D supergravity as a Chern-Simons theory, which explains the topological trace of c₃ = 1/(8π)
and the Möbius reduction to φ₀.
Duff, M.J., "Eleven-Dimensional Supergravity, Anomalies and the E8 Yang-Mills Sector," Nuclear Physics B 325(2)
(1989), 505–522. – Referenced for the connection between Chern-Simons terms in 11D and E8 symmetries,
relevant for the topological correction in φ₀ (e.g., 3/(256π⁴)).
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5. Section 4.5 - Full adjustment to prove the uniqueness of the chain
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11. Section 8.5.1 - Systematics of deviations

12. Section 7.6.2 - Callan-Symanzik route
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14. 



Appendix J — Chirality on the double cover
J.1 Setup and Notation
Geometry: (M6 = M4 × ˜M), where (˜M) is the orientable double cover of the Möbius fiber with three closed
boundary cycles (C1,C2,CT ).
Edge count: (∑i∮Ci

ˆkg ds = 6π).
The number (6π) fixes the linear boundary coefficient in 3.2.2 and thus (φtree = 1

6π ), plus the topological surcharge
(δtop = 3

256π4 ) to (φ0). References: 3.2.2 and Appendix D.

Fig. J.1 shows (˜M) with the three boundary cycles and the projectors (Pi) (see below).

J.2 Six-dimensional spinor reduction and projectors
Choose Γ matrices as



Γμ = γμ ⊗ σ0, Γ5 = γ5 ⊗ σ1, Γ6 = 1 ⊗ σ2.

The 6D Weyl condition

Γ7 = γ5 ⊗ σ3, Γ7Ψ = +Ψ

yields

Ψ(x, y) = ψL(x) ⊗ χ+(y) + ψR(x) ⊗ χ−(y),

with

σ3χ± = ±χ±.

Chiral boundary conditions on the three boundary cycles:

PT =
1

2
(1 + i σ3σn), P1 = P2 = 1

2 (1 − i σ3σn).

Thus, zero modes exist only for χ+, and the 4D zero modes are left-chiraled.
The choice is elliptic and gauge invariant.

Optionally, Wilson lines Wi ∈ SU(3) × SU(2) × U(1) along Ci only determine phases without breaking the 4D gauge
group.
They serve to read out the abelian trace in the EW block with

kEW = 41
32 .

(Reference 8.4.6)

J.3 Index set on ˜M and family number
Let A be an abelian connection with flow

m = 1
2π ∫

˜M

F ∈ Z

and boundary holonomies

1
2π ∮

Ci

A = νi ∈ Z.

The following index applies to the projectors Pi:

IndD
˜M

= #χ+ − #χ− = 1
2π ∫

˜M

F = ν1 + ν2 + νT .

Reasoning: The APS formula with boundary projections sets the η contributions to zero, Stokes provides

∑

i

∮

Ci

A = ∫

˜M

F .

Corollary: Minimal (ν1, ν2, νT ) = (1, 1, 1) yields

IndD = 3

→ three families.

The integer structure is consistent with the Chern–Simons quantization from 3.2.1:

g = n
8π2 , c3 = 1

8π .

Fig. J.2 illustrates the count IndD = ν1 + ν2 + νT .



J.4 Absence of anomalies in a family
Standard model per family with right-handed neutrino is anomaly-free:

U(1)3
Y : 3 ⋅ 2( 1

6 )
3

+ 3(− 2
3 )

3
+ 3( 1

3 )
3

+ 2(− 1
2 )

3
+ (1)3 = 0,

U(1)Y × SU(2)2 : 3 ⋅ 1
6 + (− 1

2 ) = 0,

Gravity − U(1)Y : 3 ⋅ 2 ⋅ 1
6 + 3 (− 2

3 ) + 3(
1

3
)+ 2 (− 1

2 ) + 1 = 0.

With IndD = 3, the overall theory remains anomaly-free.

J.5 Compatibility with rank windows and track
The chain

E8 ⊃ E7 ⊃ E6

remains window logic in RG flow, no 4D calibration content.

The Wilson lines are flat and preserve SU(3) × SU(2) × U(1).

The same abelian trace appears twice:

kEW = 41
32

in the EW block and

b1 =
41

10

in

κ =
b1

2π
ln

1

φ0

of the α fixed point equation.
(References 7.6, 8.4.6)

J.6 Stability with two loop windows
Flat Wilson lines only minimally change Kaluza thresholds.

The fingerprints documented in 5.2

α3(1 PeV) ≃ φ0, α3 ≃ c3 at μ ∼ 2.5 × 108 GeV

remain stable.


