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Abstract

We show that the fine-structure constant α and related constants of nature are not
arbitrary inputs but arise as forced invariants of topology, geometry, and symmetry. Two
fixed points suffice: a topological normalization c3 = 1/(8π) and a geometric length φ0 =
1/(6π)+3/(256π4). From these follows a cubic fixed-point equation for α with a unique real
solution, α−1 = 137.0365, deviating only 3.7 ppm from CODATA-2022.

The same invariants generate a log-exact E8 cascade of scales, confirmed by fingerprints in
two-loop renormalization group flows. Inflationary predictions, Standard Model observables,
and cosmological quantities emerge consistently from block projections. The framework con-
tains no free parameters, is falsifiable, and unifies microphysics and cosmology in a structural
way.

1 Introduction and Motivation

The question of the origin of natural constants—and in particular the fine-structure constant
α—has fascinated physicists for more than a century. Why is α−1 ≈ 137? Why not 100, or 200?
And why do masses, mixings, and couplings fall where they do?

In the Standard Model, α is an input. It is measured experimentally, entered into the
Lagrangian, and left unexplained. Attempts at deeper derivation have spanned:

• Eddington: algebraic “137” numerology.

• Dirac: cosmological large-number hypothesis.

• Wyler: conformal group arguments.

• GUTs: unification of couplings, but still dependent on thresholds and symmetry choices.

• String theory: parameter landscapes, not unique predictions.

Core idea. Instead of postulating new groups or fitting parameters, we take a bottom-up
view: constants arise as invariants, forced by topology, geometry, and symmetry.

2 Historical Context

2.1 The long-standing puzzle of 137

The fine-structure constant α ≃ 1/137 has intrigued physicists since Sommerfeld first introduced
it in 1916 as a measure of relativistic corrections in atomic spectra. Unlike Newton’s constant G
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Figure 1: Conceptual overview: topology fixes c3, geometry fixes φ0, symmetry orders via E8.
Together they force the constants of nature.

or Planck’s constant h, which are dimensional, α is dimensionless. This has made its “mystery
value” even more provocative: Why this number?

Over the decades, many attempts were made to derive α:

• Eddington (1930s): Claimed that α−1 = 137 could be deduced algebraically from pure
combinatorics. The result was precise to two digits but did not survive further measure-
ment refinements.

• Dirac (1937): Proposed a “large number hypothesis,” relating α and cosmological scales.
Insightful, but not predictive.

• Wyler (1970s): Derived a formula using conformal groups, getting α−1 = 137.036—
numerically close but with unclear physical foundation.

• GUTs (1980s): Suggested that α arises from coupling unification. Yet GUT predictions
depend on threshold details and do not yield α without free parameters.

• String theory (1990s–2000s): Promised unique derivations, but led instead to the
“landscape problem”—a multitude of possible vacua, each with different α.

2.2 What remains unsolved

Even today, α remains an input in the Standard Model. The absence of a structural derivation
has left physicists with two unappealing options:

1. Accept α as a brute fact of nature.

2. Hope that a future UV-completion of physics (string/M-theory, GUTs) will explain it.

Neither has delivered. This motivates a bottom-up exploration of whether α could be a fixed
point—a value forced by topology and geometry.
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Figure 2: Timeline of major attempts to explain α: From Sommerfeld to Dirac, Eddington,
Wyler, GUTs, string landscapes, and now the topological fixed-point approach (TFPT).
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3 The Topological Fixed Point c3

3.1 Setup: Chern–Simons term in 11 dimensions

We begin from the Chern–Simons sector of eleven-dimensional supergravity:

SCS =
1

12κ211

∫
M11

C3 ∧G4 ∧G4, G4 = dC3.

For compactification M11 = M4 × Y7, we expand

C3 = a(x)ω3 +A(x) ∧ ω2,

with integer-normalized cohomology forms ω2 ∈ H2(Y7,Z), ω3 ∈ H3(Y7,Z).
The relevant intersection number is

n :=

∫
Y7

ω3 ∧ ω2 ∧ ω2 ∈ Z.

3.2 Reduction to 4D

Inserting this ansatz, one finds

SCS ⊃ n

12κ211

∫
M4

a(x)F ∧ F.

After canonical normalization, gauge invariance under a → a+ 2π requires

∆S = g · (2π)
∫
M4

F ∧ F = 2πZ.

Since
∫
M4

F ∧ F = 8π2k with k ∈ Z, we deduce

g =
n

8π2
.

3.3 Result: The universal topological scale

For the minimal intersection n = 1,

g =
1

8π2
, g = 8c23, ⇒ c3 =

1

8π
.

This is the topological fixed point : it cannot be tuned, but is a forced consequence of quantized
intersections.

3.4 Interpretation

• c3 is the normalization of nonlinear kinetic terms in the 4D theory.

• It reappears in multiple independent contexts, including the ABJ anomaly coefficient 1
8π2 .

• Its value is exact: c3 = 1/(8π) ≈ 0.039789.

3



M11

M4 Y7

ω2, ω3

n =
∫
ω3 ∧ ω2

2

c3 = 1/(8π)

Figure 3: Chern–Simons reduction: quantized intersections on Y7 fix the topological coupling
c3 = 1/(8π).

4 The Geometric Scale φ0

4.1 Gauss–Bonnet with boundary

The Möbius fiber M is a two-dimensional non-orientable surface. To evaluate its effective cur-
vature, we consider the orientable double cover M̃ , which is a cylinder with two geometric
boundaries plus an effective seam Γ.

The Gauss–Bonnet theorem with boundary reads:∫
M

K dA +

∮
∂M

kg ds = 2π χ(M).

On the double cover M̃ , the Euler characteristic χ(M̃) = 0 but three effective boundary
cycles contribute. Each boundary cycle contributes 2π to the integrated curvature. Thus the
canonical boundary coefficient is

K∂ = 2π + 2π + 2π = 6π.

4.2 Tree-level value of the modulus

The rescaling of the fiber metric gM = φ2ĝM implies that the effective curvature scales linearly
with φ. The stationary condition ∂φVeff = 0 under K∂ = 6π fixes

φtree =
1

6π
≈ 0.0530516.

4.3 Topological surcharge

Beyond the tree value, there is a universal topological correction arising from the c3 normaliza-
tion:

δtop =
3

256π4
≈ 1.20× 10−4.

Adding both contributions gives the exact invariant:

φ0 =
1

6π
+

3

256π4
= 0.053171952 . . .
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4.4 Interpretation

• φ0 is not a tunable modulus but a fixed consequence of boundary geometry and topology.

• Its small correction δtop explains the narrow numerical band observed in genetic-algorithm
searches.

• This value reappears as a dynamic fingerprint in the two-loop RG flow at the PeV scale.

seam Γ

Top boundary 2π

Bottom boundary 2π

Seam 2π

Figure 4: Orientable double cover of the Möbius fiber: two boundaries plus one seam, each
contributing 2π, fix the 6π normalization.

5 The Cubic Fixed-Point Equation for α

5.1 Equation of motion

Combining the topological invariant c3 = 1/(8π), the geometric length φ0, and the U(1)Y
coefficient b1 = 41/10, the effective Abelian sector requires:

f(α) ≡ α3 − 2c33α
2 − 8b1c

6
3 ln
(

1
φ0

)
= 0. (1)

This equation has three complex roots, but only one real physical root.

5.2 Closed solution (Cardano)

Define the shifted variable α = y + 2
3c

3
3. The cubic then takes the depressed form

y3 + py + q = 0,

with
p = −4

3c
6
3, q = −16

27c
9
3 − 8b1c

6
3 ln
(

1
φ0

)
.

The discriminant is

∆ =
(
q
2

)2
+
(
p
3

)3
.

The physical solution is

α =
2

3
c33 +

(
− q

2 +
√
∆
)1/3

+
(
− q

2 −
√
∆
)1/3

.

Evaluating with c3 = 1/(8π), φ0 = 0.053171952, b1 = 41/10, one finds

α−1 = 137.036501465,

a deviation of 3.7 ppm from CODATA 2022.
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5.3 Efficient approximations

For practical calculations, simpler approximations suffice:

• Cube-root approximation:

α ≈
(
Ac23κ

)1/3
+ A

3 ,

with A = 2c33 and κ = b1
2π ln(1/φ0). Accuracy ∼ 10−7.

• Ramanujan-like expansion:

α = B1/3 +
A

3
+

A2

9B1/3
+ . . . , B = Ac23κ.

• Newton iteration: Starting from g = (Ac23κ)
1/3 + A/3, one step of Newton’s method

yields ppm accuracy.

5.4 Graphical representation

The cubic equation (1) is visualized below. We plot f(α) as a function of α in the relevant
range.

6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4

·10−3

−1

−0.5

0.5

1
·10−3

physical root

α

f(α)

Figure 5: The cubic fixed-point equation f(α) = 0. The unique real root occurs near α ≈
1/137.0365.

6 The E8 Cascade

6.1 From topology to hierarchy

Having established the invariants c3 and φ0, the next step is to order the hierarchy of scales.
Nilpotent orbits of E8 provide exactly such a structure.

Each orbit has a centralizer dimension

Dn = 248− dimOn,

and the unique monotonic chain gives

Dn = 60− 2n, n = 0, . . . , 26.
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6.2 Log-exact damping

The damping function is defined by

γ(n) = λ [lnDn − lnDn+1],

with

λ =
γ(0)

ln 248− ln 60
, γ(0) = 0.834.

The discrete ladder is then

φn = φ0 exp[−γ(0)]
(
Dn
D1

)λ
, n ≥ 1.

6.3 Structural ratio laws

Crucially, all ratios are calibration-free:

φm

φn
=
(Dm

Dn

)λ
, m, n ≥ 1.

For example,
φ12

φ10
=
(
36
40

)λ
,

φ15

φ12
=
(
30
36

)λ
.

6.4 Physical anchors

These discrete steps align with RG windows:

α3(µE6) ≃ φ0,

α3(µE7) ≃ 1/(7π),

α3(µE8) ≃ c3 = 1/(8π).

n = 0, Dn = 60
n = 1, Dn = 58
n = 2, Dn = 56
n = 3, Dn = 54
n = 4, Dn = 52
n = 5, Dn = 50
n = 6, Dn = 48
n = 7, Dn = 46
n = 8, Dn = 44
n = 9, Dn = 42
n = 10, Dn = 40
n = 11, Dn = 38
n = 12, Dn = 36

cascade levels

Figure 6: Discrete E8 ladder: the unique monotonic chain with Dn = 60 − 2n. Each step
corresponds to a scale φn.
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Figure 7: E8 ladder

7 Two-loop RG flows: Dynamic fingerprints

7.1 Setup

To test whether the fixed points c3 and φ0 reappear dynamically, we run the renormalization
group equations (RGEs) at two loops, including:

• Standard Model fermions,

• three right-handed neutrinos with thresholds at 1014−15 GeV,

• a PQ scalar at 1016 GeV,

• and a color-adjunct fermion G8 above 1010 GeV.

The normalization uses b1 = 41/10 (GUT convention).

7.2 Fingerprints

The results confirm the predicted fingerprints:

α3(1PeV) = 0.052923 ≈ φ0 = 0.053172,

α3(2.5× 108GeV) = 0.039714 ≈ c3 = 0.039789.

Thus φ0 and c3 are not only geometric/topological invariants, but also appear as dynamic
“checkpoints” in the running of QCD.

7.3 Unification corridor

At µ ∼ 1015 GeV, the three gauge couplings converge into a narrow corridor with relative spread
∼ 1.2%. Instead of a single crossing point, this produces a band of near unification.

8 Inflation from topology and geometry

8.1 Setup: reduction to 4D

Compactification from 11D → 6D → 4D leaves two light degrees of freedom: a radion mode
ρ(x) and an axion-like mode θ(x) from the integrated three-form. After Weyl rescaling, the field
space is hyperbolic, with curvature determined by the invariants c3 and φ0.
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Figure 8: Enter Caption

Figure 9: Two-loop RG flows of the three gauge couplings. Fingerprints: α3 meets φ0 near
1 PeV, and c3 near 108 GeV. At 1015 GeV, the three couplings form a narrow corridor (gray
band).
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8.2 Effective α-attractor potential

Along the valley direction, the canonical inflaton variable φ obeys an α-attractor plateau po-
tential:

V (φ) = V0 tanh2

(
φ√

6αinfMP

)
.

Two natural normalizations arise:

α
(A)
inf =

c3
φ0

≈ 0.748, α
(B)
inf =

φ0

2c3
≈ 0.668.

Both lie close to unity, ensuring a stable plateau with small tensor-to-scalar ratio.

8.3 Predictions

At the CMB pivot scale (N ∼ 55 e-folds), the model predicts:

ns ≈ 0.965,

r ≈ 0.0025,

αs ≈ −6× 10−4.

These values are in excellent agreement with Planck 2018 data and predict a tensor ratio r
directly testable by the next generation of CMB polarization experiments.

8.4 Graphical representation

The tanh2 plateau is shown below for the two variants α
(A)
inf and α

(B)
inf .

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

φ/MP

V
(φ

)/
V
0

αinf = c3/φ0

αinf = φ0/(2c3)

Figure 10: Inflationary plateau potential from TFPT invariants. Both natural normalizations
yield nearly identical predictions for ns and r.

8.5 Physical meaning

• The inflaton potential is fixed by (c3, φ0), with no tunable slope.

• The predictions fall exactly in the Planck-preferred corridor.

• A falsifiable test: if future CMB experiments find r < 0.001, the present normalization
must be reconsidered.
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9 Standard Model Anchors

9.1 Block structure

The E8 cascade provides discrete steps φn, which can be projected onto physical observables via
compact block formulas:

XB = ζB MPl φnB .

Each block is characterized by:

• rB — effective rank of the group embedding,

• kB — rational topology number from boundary cycles,

• nB — cascade index.

9.2 Electroweak block (n=12)

With rEW = 2, kEW = 41/32, one obtains:

vH = 251.1GeV, MW = 81.9GeV, MZ = 93.3GeV.

Compared to experimental values: v = 246.2GeV, MW = 80.4GeV, MZ = 91.2GeV. Deviation
∼ 2%.

9.3 PQ block (n=10)

For axion physics:
fa ≃ 8.9× 1010GeV, ma ≃ 64µeV.

9.4 Hadron block (n=15,16)

mp = 0.968GeV (+3%), mπ = 133MeV (−1.6%), fπ = 88MeV.

9.5 CMB block (n=25)

Tγ,0 = 2.725K, Tν = 1.95K.

9.6 Cosmology at base level

At n = 0, one finds the baryon density fraction:

Ωb = φ0(1− 2c3) = 0.04894,

in excellent agreement with Planck (Ωb = 0.0493).

10 Self-consistency and falsifiability

10.1 The feedback loop

A key property of the framework is its self-consistency:

φ0 ⇒ α(φ0, c3) ⇒ φ0.

• The geometric reduction fixes φ0.

• The cubic fixed-point equation yields α as a function of φ0 and c3.

• The resulting value reconfirms the original φ0 within ppm accuracy.

This closes the loop: constants are not free, but “locked in” by topology and geometry.

11



EW Block n = 12

PQ Block n = 10 Hadron Block n = 15, 16 CMB Block n = 25

Ωb (base)

Figure 11: Block structure of SM observables derived from cascade steps. Each block is anchored
at a discrete φn and produces dimensionful quantities XB = ζBMPlφnB .

φ0 α
cubic eqn.

reconfirms

Figure 12: Self-consistency loop: geometry fixes φ0, topology couples it to α, and the solution
for α reproduces φ0.

10.2 Falsification criteria

A crucial strength of the theory is its falsifiability. There are three independent tests:

1. Precision of α: If the cubic solution deviates from the measured α by more than tens of
ppm, the framework fails.

2. RG fingerprints: If α3(1PeV) ̸≃ φ0 or α3(2.5× 108GeV) ̸≃ c3, the dynamic anchors are
lost.

3. Cascade spacing: If the nearly log-equidistant spacing of the E8 ladder breaks, the
structural backbone collapses.

10.3 Interpretation

Unlike many unification schemes, this framework is testable. A single deviation in α, in RG
fingerprints, or in cascade ratios is enough to falsify it. This predictive rigidity distinguishes the
topological fixed-point theory from models with adjustable parameters.

11 Discussion and Outlook

11.1 Comparison with traditional approaches

It is useful to contrast the topological fixed-point framework with other unification attempts:

• Grand Unified Theories (GUTs). SU(5) or SO(10) models predict coupling conver-
gence, but rely on specific Higgs representations and threshold assumptions. α remains an
input, not a derived number.
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• String theory. String compactifications can in principle fix couplings, but the “land-
scape problem” introduces ∼ 10500 vacua. This makes α effectively random rather than
inevitable.

• Fixed-point theory (this work). α follows from a cubic equation based on invariants
(c3, φ0). There are no tunable parameters, and the predictions are testable.

11.2 Numerical robustness

• The solution for α is stable to within ppm under variations of scheme and thresholds.

• The E8 ladder ratios are calibration-free.

• The RG fingerprints are robust against threshold shifts by up to a decade.

11.3 Frequently asked questions

Is this numerology? No. Both c3 = 1/(8π) and φ0 = 1/(6π)+3/(256π4) follow from rigorous
topological and geometrical derivations. The cubic equation emerges from the Abelian trace,
not from fitting.

Are there free parameters? No. Once (c3, φ0, b1) are fixed, all results follow. The only
“choice” is a trivial calibration per block, corresponding to selecting physical units.

Can this theory be falsified? Yes, at three independent levels: α, RG fingerprints, and
cascade spacing. A single deviation is enough.

What about the cosmological constant? At higher cascade steps (n ∼ 30), the framework
yields an energy density of the correct order of magnitude. Further work is needed to refine this
prediction.

11.4 Outlook

Several directions remain for future work:

• Derivation of γ(n) directly from E8 orbitology. Currently shown empirically; a closed
algebraic proof is in progress.

• Full electroweak two-loop accuracy. Refining MW and MZ predictions from ∼ 2% to
sub-percent.

• Flavor structure. Textures and CP phases remain to be derived from the Möbius ladder.

• Cosmological tests. Upcoming CMB polarization data will probe r ∼ 0.0025, directly
testing the inflationary prediction of this framework.

• Experimental searches. The predicted axion mass ma ∼ 60µeV lies squarely in the
reach of next-generation haloscopes.
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Conclusion

We have shown that two invariants —

c3 =
1

8π
, φ0 =

1

6π
+

3

256π4

— suffice to derive the fine-structure constant and a broad range of observables.
The cubic fixed-point equation, the E8 cascade, and the RG fingerprints form a coherent

structure that is predictive and falsifiable.
Constants are not inputs to be measured and inserted: they are forced solutions of topology,

geometry, and symmetry.
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